
Data Structures and 
Algorithms
Session 9. February 18, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137



Announcements

Homework 2 is up. Due Feb. 23

Problem 2 (Weiss 3.7), trimToSize() creates a 
new array of same size as list, copies each 
element.

Problem 5 (Weiss 3.9), we want a linear time 
algorithm



Review

Binary Search Trees

Basic operations: insert, findMin/Max, contains

Delete

Average depth analysis



Today’s Plan

Brief look at tradeoffs

Balanced (AVL) Binary Search Trees

AVL Tree property

Tree Rotations

Worst case depth analysis



Tradeoffs
insert remove lookup index

ArrayList

LinkedList

Stack/Queue

BST

AVL

O(N) O(N) O(N) O(1)

O(1) O(1) O(N) O(N)

O(1) O(1) N/A N/A

O(d)=O(N) O(d)=O(N) O(d)=O(N) N/A

O(log N) O(log N) O(log N) N/A

There may not be free lunch, but sometimes 
there’s a cheaper lunch



Question

How do we visit the contents of a binary search 
tree in ascending order?



AVL Trees

Motivation: want height of tree to be close to log N 

AVL Tree Property:
For each node, all keys in its left subtree are less 
than the node’s and all keys in its right subtree are 
greater. Furthermore, the height of the left and 
right subtrees differ by at most 1



AVL Tree Visual

+- +-



Tree Rotations

To balance the tree after an insertion violates the 
AVL property,

rearrange the tree; make a new node the root.

This rearrangement is called a rotation.

There are 2 types of rotations.



AVL Tree Visual: 
Before insert

b

a

3

1 2



AVL Tree Visual: 
After insert

b

a

3

1
2



AVL Tree Visual: 
Single Rotation

b

a

31 2



AVL Tree 
Single Rotation

Works when new node is added to outer subtree 
(left-left or right-right)

What about inner subtrees? (left-right or right-left)



AVL Tree Visual:
Before Insert 2

b

a

1

c

2 3

4



AVL Tree Visual:
After Insert 2

b

a

1

c

3

2

4



AVL Tree Visual:
Single Rotation Fails

b

a

1
c

3

2

4



AVL Tree Visual:
Double Rotation

b

a

1

c

3

2

4



AVL Tree Visual:
Double Rotation

b

a

1

c

3

2

4



AVL Tree Visual:
Double Rotation

ba

1

c

2 4

3



Rotation running time

Constant number of link rearrangements

Double rotation needs twice as many, but still 
constant

So AVL rotations do not change O(d) running 
time of all BST operations*

* remove() can require up to O(d) rotations. 



Depth analysis

Worst case: minimum number of nodes in an AVL tree 
of height h: N(h)

N(1) = 1, N(2) = 2

For greater heights, the total number of nodes includes:

the root node

the # of nodes in a subtree of size h-1

the # of nodes in a subtree of size h-2

N(h) = 1 + N(h− 1) + N(h− 2)



Depth analysis

Recursively subbing in the formula above, we get

Combine all the newly generated 1’s, then recurse 

N(h) = 1 + N(h− 1) + N(h− 2)

N(h) = 1 + (1 + N(h− 2) + N(h− 3)) +
(1 + N(h− 3) + N(h− 4))

N(h) = 1 + 2
+(1 + N(h− 3) + N(h− 4))
+(1 + N(h− 4) + N(h− 5))
+(1 + N(h− 4) + N(h− 5))
+(1 + N(h− 5) + N(h− 6))



Depth analysis

Each time we recurse, we generate a new 
constant, which is the count of the number of 
evaluations we did. 

We can recurse h/2 times before at least one 
N(h-k)=N(0)

Therefore, we can lower bound 

N(h) >

h/2∑

i=0

2i > 2h/2



Solve for h, 

Recap: 

We analyzed minimum number of nodes necessary to cause 
height h

We lower bounded that minimum; a formula that is even 
worse than the worst case

We showed that worst case means the height is still O(log N)

N(h) >

h/2∑

i=0

2i > 2h/2

log(N) > h/2
2 log(N) > h

h = O(log N)



Looking Forward

AVL Trees aggressively guarantee log running time

Every operation is now log running time

May be overkill



Reading

Weiss Section 4.5: Splay Trees


