Data Structures and Algorithms

Session 8. February 16, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Homework 2 is up. Due Feb. 23

* Problem 2 (Weiss 3.7), trimToSize() creates a new array of same size as list, copies each element.

R	levi	ew

Introduction to Trees

* Definitions

* Tree Traversal Algorithms

* Binary Trees

Today's Plan

- * Finish up examples of binary tree applications
- * Binary Search Trees
 - * Basic operations: insert, findMin/Max, contains
 - * Delete
 - * Average depth analysis

Full Binary Tree Depth

* The number of nodes at depth **d** is 2^d

* Total in a tree of depth d is* (series identity)

$$\sum_{i=0}^{d} 2^{i} = 2^{d+1} - 1$$

* A perfect binary tree has $N = 2^{d+1} - 1$ nodes

* Solving for **d** finds $d = \log(N+1) - 1$

Expression Trees

* Expression Trees are yet another way to store mathematical expressions

* ((x + y) * z)/300

- * Note that the main mathematical operators have 2 operands each
- Inorder traversal reads back infix notation
- * Postorder traversal reads postfix notation

Search (Tree) ADT

- * ADT that allows insertion, removal, and searching by key
 - * A key is a value that can be compared
 - * In Java, we use the **Comparable** interface
 - * Comparison must obey transitive property
- * Notice that the Search ADT doesn't use any index

Binary Search Tree

* Binary Search Tree Property: Keys in left subtree are less than root. Keys in right subtree are greater than root.

** BST property holds for all subtrees of a BST

Inserting into a BST

- * insert(x) is public method
- ** privately, use insert(x, root)

```
* insert(x, Node t)
if (t == null) return new Node(x)
if (x > t.key), then t.right = insert(x, t.right)
if (x < t.key), then t.left = insert(x, t.left)
return t</pre>
```


findMin(t)

if (t.left == null) return t.key
else return findMin(t.left)

* contains(x,t)

- if (t == null) return false
- if (x == t.key) return true
- if (x > t.key), then return contains(x, t.right)
- if (x < t.key), then return contains(x, t.left)

Deleting from a BST

- Removing a leaf is easy, removing a node with one child is also easy
- * Nodes with no grandchildren are easy
- * Nodes with both children and grandchildren need more thought
 - Why can't we replace the removed node with either of its children?

A Removal Strategy

* First, find node to be removed, t

Replace with the smallest node from the right subtree

* a = findMin(t.right); t.key = a.key;

* Then delete original smallest node in right subtree remove(a.key, t.right)

Average Case Analysis

* All operations run in O(d) time, but what is d?

- Worst case d = N
- * Best case d = log(N+1)-1

* Average case?

Average Case Analysis

- * Consider the internal path length: the sum of the depths of all nodes in a tree
- * Let D(N) be the internal path length for some tree T with N nodes*.
 - * Suppose **i** nodes are in the left subtree of **T**.

* Then
$$D(N) = D(i) + D(N - i - 1) + N - 1$$

- D(N) = D(i) + D(N i 1) + N 1
 - * Assume all insertion sequences are equally likely
 - Subtree sizes only depend on the 1st key inserted

* all subtree sizes equally likely

* Average of **D(i)** (and **D(N-i-1)**) is $\frac{1}{N} \sum_{i=0}^{N-1} D(j)$

* Average case **D(N)** then becomes

$$D(N) = \frac{2}{N} \left[\sum_{j=0}^{N-1} D(j) \right] + N - 1$$

* This is a **recurrence**, which can be solved to show that $D(N) = O(N \log N)$

* (page 272-273 in Weiss)

* Then the average depth over all **N** nodes is $O(\log N)$

Looking Forward

* How do we implement Search Trees that explicitly avoid worst case O(N) operations?

* What is the cost of avoiding worst case?

Reading

Weiss Section 4.4: AVL Trees