
Data Structures and
Algorithms
Session 8. February 16, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 2 is up. Due Feb. 23

Problem 2 (Weiss 3.7), trimToSize() creates a
new array of same size as list, copies each
element.

Review

Introduction to Trees

Definitions

Tree Traversal Algorithms

Binary Trees

Today’s Plan

Finish up examples of binary tree applications

Binary Search Trees

Basic operations: insert, findMin/Max, contains

Delete

Average depth analysis

Full Binary Tree Depth

The number of nodes at depth d is

Total in a tree of depth d is

(series identity)

A perfect binary tree has nodes

Solving for d finds

2d

d∑

i=0

2i

N = 2d+1 − 1

d = log(N + 1)− 1

= 2d+1 − 1

Expression Trees

Expression Trees are yet another way to store
mathematical expressions

((x + y) * z)/300

Note that the main mathematical operators have 2
operands each

Inorder traversal reads back infix notation

Postorder traversal reads postfix notation

Hungry?

Enough money?Do nothing

Chicken and Rice Subsconscious

Decision Trees

It is often useful to design decision trees

Left/right child represents yes/no answers to
questions

Search (Tree) ADT

ADT that allows insertion, removal, and searching
by key

A key is a value that can be compared

In Java, we use the Comparable interface

Comparison must obey transitive property

Notice that the Search ADT doesn’t use any index

Binary Search Tree

Binary Search Tree Property:
 Keys in left subtree are less than root.
 Keys in right subtree are greater than root.

BST property holds for all subtrees of a BST

Inserting into a BST

insert(x) is public method

privately, use insert(x, root)

insert(x, Node t)
 if (t == null) return new Node(x)
 if (x > t.key), then t.right = insert(x, t.right)
 if (x < t.key), then t.left = insert(x, t.left)
 return t

Searching a BST

findMin(t)
 if (t.left == null) return t.key
 else return findMin(t.left)

contains(x,t)
 if (t == null) return false
 if (x == t.key) return true
 if (x > t.key), then return contains(x, t.right)
 if (x < t.key), then return contains(x, t.left)

Deleting from a BST

Removing a leaf is easy, removing a node with one
child is also easy

Nodes with no grandchildren are easy

Nodes with both children and grandchildren need
more thought

Why can’t we replace the removed node with
either of its children?

A Removal Strategy

First, find node to be removed, t

Replace with the smallest node from the right
subtree

a = findMin(t.right);
t.key = a.key;

Then delete original smallest node in right subtree
remove(a.key, t.right)

Average Case Analysis

All operations run in O(d) time, but what is d?

Worst case d = N

Best case d = log(N+1)-1

Average case?

Average Case Analysis

Consider the internal path length: the sum of the
depths of all nodes in a tree

Let D(N) be the internal path length for some tree
T with N nodes*.

Suppose i nodes are in the left subtree of T.

Then D(N) = D(i) + D(N − i− 1) + N − 1

Average Case Analysis

Assume all insertion sequences are equally likely

Subtree sizes only depend on the 1st key
inserted

all subtree sizes equally likely

Average of D(i) (and D(N-i-1)) is

D(N) = D(i) + D(N − i− 1) + N − 1

1
N

N−1∑

j=0

D(j)

Average Case Analysis

Average case D(N) then becomes

This is a recurrence, which can be solved to show
that

(page 272-273 in Weiss)

Then the average depth over all N nodes is

D(N) =
2
N

N−1∑

j=0

D(j)

 + N − 1

D(N) = O(N log N)

O(log N)

Looking Forward

How do we implement Search Trees that explicitly
avoid worst case O(N) operations?

What is the cost of avoiding worst case?

Reading

Weiss Section 4.4: AVL Trees

