Data Structures and
Algorithms

Session 8. February 16, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 2 is up. Due Feb. 23

* Problem 2 (Weiss 3.7), trimToSize() creates a
new array of same size as list, copies each
element.

Review

* Introduction to Trees
¥ Definitions
* Tree Traversal Algorithms

* Binary Trees

loday’s Plan

* Finish up examples of binary tree applications

* Binary Search Trees
* Basic operations: insert, findMin/Max, contains
* Delete

* Average depth analysis

Full Binary Tree Depth

% The number of nodes at depth d is 2
d
* Total in a tree of depth d is Z oi — 9d+1 _ 1
* (series identity) 1=0
% A perfect binary tree has N = 29! — 1 nodes

% Solving for d finds d =1log(N +1) — 1

EXpression Irees

* Expression Trees are yet another way to store
mathematical expressions

* ((x +y) *2)/300

* Note that the main mathematical operators have 2
operands each

* |Inorder traversal reads back infix notation

* Postorder traversal reads postfix notation

Decision lrees

* It is often useful to design decision trees

* Left/right child represents yes/no answers to

guestions
Hungry?

7\

Do nothing

Enough money?

/" O\

Chicken and Rice Subsconscious

Search (Tree) ADT

* ADT that allows insertion, removal, and searching
by key

* A key is a value that can be compared
* In Java, we use the Comparable interface
* Comparison must obey transitive property

* Notice that the Search ADT doesn’t use any index

Binary Search Tree

* Binary Search Tree Property:
Keys in left subtree are less than root.
Keys in right subtree are greater than root.

* BST property holds for all subtrees of a BST

Inserting into a BST

* insert(x) is public method
* privately, use insert(x, root)

* insert(x, Node t)
if (t == null) return new Node(x)
if (x > t.key), then t.right = insert(x, t.right)
if (x < t.key), then t.left = insert(x, t.left)
return t

Searching a BST

* findMin(t)
if (t.left == null) return t.key
else return findMin(t.left)

* contains(x,t)
if (t == null) return false
if (x == t.key) return true
if (x > t.key), then return contains(x, t.right)
if (x < t.key), then return contains(x, t.left)

Deleting from a BST

* Removing a leaf is easy, removing a node with one
child is also easy

* Nodes with no grandchildren are easy

* Nodes with both children and grandchildren need
more thought

* Why can’t we replace the removed node with
either of its children?

A Removal Strategy

* First, find node to be removed, t

* Replace with the smallest node from the right
subtree

* a = findMin(t.right);
t.key = a.key;

* Then delete original smallest node in right subtree
remove(a.key, t.right)

Average Case Analysis

* All operations run in O(d) time, but what is d?
* Worst cased =N
* Best case d = log(N+1)-1

* Average case?

Average Case Analysis

* Consider the internal path length: the sum of the
depths of all nodes in a tree

* Let D(N) be the internal path length for some tree
T with N nodes™.

* Suppose i nodes are in the left subtree of T.

% Then D(N)=D(i)+ D(N —it—1)+ N —1

Average Case Analysis

¥ DIN)=D@#)+ DN —-i1—1)+ N —1
* Assume all insertion sequences are equally likely

% Subtree sizes only depend on the 15t key
Inserted

* all subtree sizes equally likely

N —
1
¥ Average of D(i) (and D(N-i-1 el
g (1) (()) is NEZO:

Average Case Analysis

* Average case D(N) then becomes

D(N) = = DG)| + N -1

* This is a recurrence, which can be solved to show
that D(N) = O(Nlog N)

* (page 272-273 in Weiss)

% Then the average depth over all N nodes is O(log N)

| ooking Forward

* How do we implement Search Trees that explicitly
avoid worst case O(N) operations?

* What is the cost of avoiding worst case?

Reading

* Weiss Section 4.4: AVL Trees

