Data Structures and Algorithms

Session 8. February 16, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 2 is up. Due Feb. 23

粦 Problem 2 (Weiss 3.7), trimToSize() creates a new array of same size as list, copies each element.

Review

** Introduction to Trees

* Definitions
* Tree Traversal Algorithms
** Binary Trees

Today's Plan

** Finish up examples of binary tree applications

* Binary Search Trees
* Basic operations: insert, findMin/Max, contains
* Delete
* Average depth analysis

Full Binary Tree Depth

** The number of nodes at depth \mathbf{d} is 2^{d}

* Total in a tree of depth \mathbf{d} is $\sum_{i=0}^{d} 2^{i}=2^{d+1}-1$
* (series identity)

$$
\sum_{i=0}^{d} 2^{i}=2^{d+1}-1
$$

** A perfect binary tree has $N=2^{d+1}-1$ nodes

* Solving for d finds $d=\log (N+1)-1$

Expression Trees

米 Expression Trees are yet another way to store mathematical expressions

* ($\left.(x+y){ }^{*} z\right) / 300$
* Note that the main mathematical operators have 2 operands each
** Inorder traversal reads back infix notation
* Postorder traversal reads postfix notation

Decision Trees

* It is often useful to design decision trees
* Left/right child represents yes/no answers to questions

Hungry?

Do nothing
Enough money?

Chicken and Rice
Subsconscious

Search (Tree) ADT

* ADT that allows insertion, removal, and searching by key
* A key is a value that can be compared
* In Java, we use the Comparable interface
* Comparison must obey transitive property
* Notice that the Search ADT doesn't use any index

Binary Search Tree

** Binary Search Tree Property:
Keys in left subtree are less than root.
Keys in right subtree are greater than root.
** BST property holds for all subtrees of a BST

Inserting into a BST

* insert(\mathbf{x}) is public method
* privately, use insert(x, root)
* insert(x, Node t)
if ($\mathbf{t}==$ null) return new $\operatorname{Node}(\mathrm{x})$
if ($x>t$ t.key), then t.right $=$ insert(x, t.right) if ($\mathbf{x}<\mathrm{t} . \mathrm{ke} \mathbf{y}$), then t .left $=$ insert(\mathbf{x}, t.left) return \mathbf{t}

Searching a BST

* findMin(t)
if (t.left == null) return t.key else return findMin(t.left)
* contains(x,t)
if ($\mathbf{t}==$ null) return false
if ($\mathbf{x}==\mathbf{t}$.key) return true
if ($\mathbf{x}>$ t.key), then return contains(\mathbf{x}, t.right) if ($\mathbf{x}<\mathrm{t}$. key), then return contains(\mathbf{x}, t.left)

Deleting from a BST

* Removing a leaf is easy, removing a node with one child is also easy
* Nodes with no grandchildren are easy
** Nodes with both children and grandchildren need more thought
* Why can't we replace the removed node with either of its children?

A Removal Strategy

* First, find node to be removed, \mathbf{t}
* Replace with the smallest node from the right subtree
* $\mathbf{a}=$ findMin(t.right); t.key = a.key;
** Then delete original smallest node in right subtree remove(a.key, t.right)

Average Case Analysis

** All operations run in $\mathrm{O}(\mathrm{d})$ time, but what is d ?

* Worst case $\mathrm{d}=\mathrm{N}$
* Best case $d=\log (N+1)-1$
* Average case?

Average Case Analysis

** Consider the internal path length: the sum of the depths of all nodes in a tree
** Let $\mathbf{D}(\mathbf{N})$ be the internal path length for some tree \mathbf{T} with \mathbf{N} nodes*.

* Suppose \mathbf{i} nodes are in the left subtree of \mathbf{T}.
* Then $D(N)=D(i)+D(N-i-1)+N-1$

Average Case Analysis

** $D(N)=D(i)+D(N-i-1)+N-1$
** Assume all insertion sequences are equally likely

* Subtree sizes only depend on the $1^{\text {st }}$ key inserted
** all subtree sizes equally likely
** Average of $\mathbf{D}(\mathbf{i})$ (and $\mathbf{D}(\mathbf{N}-\mathbf{i}-\mathbf{1})$) is $\frac{1}{N} \sum_{j=0}^{N-1} D(j)$

Average Case Analysis

* Average case $\mathbf{D}(\mathbf{N})$ then becomes

$$
D(N)=\frac{2}{N}\left[\sum_{j=0}^{N-1} D(j)\right]+N-1
$$

米 This is a recurrence, which can be solved to show that $D(N)=O(N \log N)$

* (page 272-273 in Weiss)
** Then the average depth over all \mathbf{N} nodes is $O(\log N)$

Looking Forward

米 How do we implement Search Trees that explicitly avoid worst case $\mathrm{O}(\mathrm{N})$ operations?

* What is the cost of avoiding worst case?

Reading

** Weiss Section 4.4: AVL Trees

