
Data Structures and
Algorithms
Session 5. February 2, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 1 is due now

Homework 2 will be posted after class

Review

Stacks

Applications

Recursion

Syntax Checking

Postfix Evaluation

Implementation

Today

Briefly look over Homework 2

(Header Nodes for Linked Lists)

Stack Wrap up

Queues

Header Nodes

Convenient way to keep track of empty lists

header nodes a.k.a. sentinel nodes

Without sentinels, removing first and last nodes
need special handling

With sentinels, all adds and removes are the same
operation

Stack Implementations

Linked List:

Push(x) <-> add(x,0)

Pop(x) <-> remove(0)

Array:

Push(x) <-> Array[k++] = x

Pop(x) <-> return Array[--k]

Queues

Stacks are Last In First Out

Queues are First In First Out, first-come first-
served

Operations: enqueue and dequeue

Analogy: standing in line, garden hose, etc

Queue Implementation

Linked List

add(x,0) to enqueue, remove(N-1) to dequeue

Array List won’t work well!

add(x,0) is expensive

Solution: use a circular array

Circular Array Queue

Don’t bother shifting after removing from array list

Keep track of start and end of queue

When run out of space, wrap around

modular arithmetic

When array is full, increase size using list tactic

Stacks and Queues in
Java
Queue interface uses different operation names

offer == enqueue

poll == dequeue

LinkedList implements Queue

Stack is a built in class. Uses push() and pop()

Deque interface is “double-ended queue”

Assignments

Homework 2

Weiss Sections 4.1 and 4.2

