Data Structures and Algorithms

Session 27. May 4th, 2009 Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Annoucements and Today's Plan

* Final Exam Wednesday May 13 ${ }^{\text {th }}, 1: 10$ PM - 4 PM Mudd 633
* Course evaluation
* Review $2^{\text {nd }}$ half of semester
* Lots of slides, l'll go fast but ask questions if you have them

Final Topics Overview

* Big-Oh definitions (Omega, Theta)
* Arraylists/Linked Lists
* Stacks/Queues
* Binary Search Trees: AVL, Splay
* Tries

类 Heaps

* Huffman Coding Trees
* Hash Tables: Separate Chaining, Probing
* Graphs: Topological Sort, Shortest Path, Max-Flow, Min Spanning Tree, Euler
* Complexity Classes

米 Disjoint Sets

* Sorting: Insertion Sort, Shell Sort, Merge Sort, Quick Sort, Radix Sort, Quick Select

Big Oh Definitions

** For N greater than some constant, we have the following definitions:

$$
\begin{aligned}
& T(N)=O(f(N)) \leftarrow T(N) \leq c f(N) \\
& T(N)=\Omega(g(N)) \leftarrow T(N) \geq c f(N) \\
& T(N)=\Theta(h(N)) \leftarrow \begin{array}{l}
T(N)=O(h(N)), \\
T(N)=\Omega(h(N))
\end{array}
\end{aligned}
$$

There exists some constant c such that cf(N) bounds T(N)

Big Oh Definitions

* Alternately, $\mathrm{O}(\mathrm{f}(\mathrm{N}))$ can be thought of as meaning

$$
T(N)=O(f(N)) \leftarrow \lim _{N \rightarrow \infty} f(N) \geq \lim _{N \rightarrow \infty} T(N)
$$

* Big-Oh notation is also referred to as asymptotic analysis, for this reason.

Huffman's Algorithm

* Compute character frequencies
* Create forest of 1-node trees for all the characters.

米 Let the weight of the trees be the sum of the frequencies of its leaves

* Repeat until forest is a single tree: Merge the two trees with minimum weight. Merging sums the weights.

Huffman Details

米 We can manage the forest with a priority queue:
粦 buildHeap first,

* find the least weight trees with 2 deleteMins, * after merging, insert back to heap.
** In practice, also have to store coding tree, but the payoff comes when we compress larger strings

Hash Table ADT

* Insert or delete objects by key

类 Search for objects by key

* No order information whatsoever
* Ideally O(1) per operation

Hash Functions

类 A hash function maps any key to a valid array position
** Array positions range from 0 to $\mathrm{N}-1$

* Key range possibly unlimited

Hash Functions

* For integer keys, (key mod N) is the simplest hash function
* In general, any function that maps from the space of keys to the space of array indices is valid

粦 but a good hash function spreads the data out evenly in the array;

* A good hash function avoids collisions

Collisions

* A collision is when two distinct keys map to the same array index

米 e.g., $h(x)=x \bmod 5$

$$
h(7)=2, h(12)=2
$$

* Choose $h(x)$ to minimize collisions, but collisions are inevitable

米 To implement a hash table, we must decide on collision resolution policy

Collision Resolution

* Two basic strategies
* Strategy 1: Separate Chaining
* Strategy 2: Probing; lots of variants

Strategy 1: Separate Chaining

* Keep a list at each array entry
* Insert(x): find $\mathrm{h}(\mathrm{x})$, add to list at $\mathrm{h}(\mathrm{x})$
** Delete (x) : find $h(x)$, search list at $h(x)$ for x, delete
* Search (x) : find $h(x)$, search list at $h(x)$
** We could use a BST or other ADT, but if $h(x)$ is a good hash function, it won't be worth the overhead

Strategy 2: Probing

米 If $h(x)$ is occupied, $\operatorname{try} \mathbf{h}(\mathbf{x})+\mathrm{f}(\mathrm{i}) \bmod \mathbf{N}$ for $i=1$ until an empty slot is found

* Many ways to choose a good f(i)

米 Simplest method: Linear Probing

* $f(i)=i$

Primary Clustering

** If there are many collisions, blocks of occupied cells form: primary clustering

粦 Any hash value inside the cluster adds to the end of that cluster

* (a) it becomes more likely that the next hash value will collide with the cluster, and (b) collisions in the cluster get more expensive

Quadratic Probing

* $f(i)=i \wedge 2$
* Avoids primary clustering
* Sometimes will never find an empty slot even if table isn't full!
** Luckily, if load factor $\lambda \leq \frac{1}{2}$, guaranteed to find empty slot

Double Hashing

** If $h_{1}(x)$ is occupied, probe according to

$$
f(i)=i \times h_{2}(x)
$$

类 $2^{\text {nd }}$ hash function must never map to 0
** Increments differently depending on the key

Rehashing

** Like ArrayLists, we have to guess the number of elements we need to insert into a hash table
** Whatever our collision policy is, the hash table becomes inefficient when load factor is too high.

* To alleviate load, rehash:
* create larger table, scan current table, insert items into new table using new hash function

Graph Terminology

** A graph is a set of nodes and edges

* nodes aka vertices
** edges aka arcs, links
* Edges exist between pairs of nodes
** if nodes x and y share an edge, they are adjacent

Graph Terminology

** Edges may have weights associated with them

* Edges may be directed or undirected
** A path is a series of adjacent vertices
米 the length of a path is the sum of the edge weights along the path (1 if unweighted)
** A cycle is a path that starts and ends on a node

Graph Properties

粦 An undirected graph with no cycles is a tree
粦 A directed graph with no cycles is a special class called a directed acyclic graph (DAG)

* In a connected graph, a path exists between every pair of vertices
* A complete graph has an edge between every pair of vertices

Implementation

米 Option 1:

* Store all nodes in an indexed list
* Represent edges with adjacency matrix
* Option 2:
* Explicitly store adjacency lists

Topological Sort

* Problem definition:
* Given a directed acyclic graph G, order the nodes such that for each edge $\left(v_{i}, v_{j}\right) \in E, v_{i}$ is before v_{j} in the ordering.

粦 e.g., scheduling errands when some tasks depend on other tasks being completed.

Topological Sort Better Algorithm

* 1. Compute all indegrees
* 2. Put all indegree 0 nodes into a Collection
*3. Print and remove a node from Collection
* 4. Decrement indegrees of the node's neighbors.
* 5 . If any neighbor has indegree 0 , place in Collection. Go to 3.

Topological Sort Running time

* Initial indegree computation: $\mathrm{O}(|\mathrm{E}|)$
* Unless we update indegree as we build graph
* |V| nodes must be enqueued/dequeued
* Dequeue requires operation for outgoing edges
* Each edge is used, but never repeated
* Total running time $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Shortest Path

米 Given $\mathbf{G}=\mathbf{(V , E})$, and a node $\mathbf{s} \in \mathbf{V}$, find the shortest (weighted) path from \mathbf{s} to every other vertex in \mathbf{G}.
** Motivating example: subway travel

* Nodes are junctions, transfer locations

米 Edge weights are estimated time of travel

Breadth First Search

* Like a level-order traversal
* Find all adjacent nodes (level 1)
* Find new nodes adjacent to level 1 nodes (level 2)
** ... and so on
** We can implement this with a queue

Unweighted Shortest Path Algorithm

* Set node s' distance to 0 and enqueue s.
* Then repeat the following:
* Dequeue node v. For unset neighbor u:
* set neighbor u's distance to v's distance +1
** mark that we reached \mathbf{v} from \mathbf{u}
** enqueue u

Weighted Shortest Path

* The problem becomes more difficult when edges have different weights
** Weights represent different costs on using that edge
* Standard algorithm is Dijkstra's Algorithm

Dijkstra's Algorithm

米 Keep distance overestimates $\mathbf{D}(\mathbf{v})$ for each node \mathbf{v} (all non-source nodes are initially infinite)

米 1. Choose node \mathbf{v} with smallest unknown distance

* 2. Declare that v's shortest distance is known
* 3. Update distance estimates for neighbors

Updating Distances

* For each of \mathbf{v} 's neighbors, w,
** if $\min (\mathbf{D}(\mathbf{v})+$ weight $(\mathbf{v}, \mathbf{w}), \mathbf{D}(\mathbf{w})$)
* i.e., update $\mathbf{D}(\mathbf{w})$ if the path going through \mathbf{v} is cheaper than the best path so far to w

Proof by Contradiction (Sketch)

* Contradiction: Dijkstra's finds a shortest path to node w through \mathbf{v}, but there exists an even shorter path
** This shorter path must pass from inside our known set to outside.
* Call the $1^{\text {st }}$ node in cheaper path outside our set u

粦 The path to u must be shorter than the path to w

* But then we would have chosen u instead

Computational Cost

* Keep a priority queue of all unknown nodes
* Each stage requires a deleteMin, and then some decreaseKeys (the \# of neighbors of node)
* We call decreaseKey once per edge, we call deleteMin once per vertex
* Both operations are $\mathrm{O}(\log |\mathrm{V}|)$

米 Total cost: $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|+|\mathrm{V}| \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

All Pairs Shortest Path

* Dijkstra's Algorithm finds shortest paths from one node to all other nodes
* What about computing shortest paths for all pairs of nodes?
* We can run Dijkstra's $|\mathrm{V}|$ times. Total cost: $O\left(|V|^{3}\right)$

米 Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)

Recursive Motivation

* Consider the set of numbered nodes $\mathbf{1}$ through \mathbf{k}
* The shortest path between any node \mathbf{i} and \mathbf{j} using only nodes in the set $\{\mathbf{1}, \ldots, \mathbf{k}\}$ is the minimum of
* shortest path from \mathbf{i} to \mathbf{j} using nodes $\{\mathbf{1}, \ldots, \mathbf{k}-\mathbf{1}\}$
** shortest path from \mathbf{i} to \mathbf{j} using node \mathbf{k}
* $\operatorname{path}(i, j, k)=\min (\operatorname{path}(i, j, k-1)$, path(i,k,k-1)+ path(k,j,k-1))

Dynamic Programming

** Instead of repeatedly computing recursive calls, store lookup table

* To compute path(i,j,k) for any i, j, we only need to look up path(-,-, k-1)
* but never k-2, k-3, etc.
* We can incrementally compute the path matrix for $\mathrm{k}=0$, then use it to compute for $\mathrm{k}=1$, then $\mathrm{k}=2 \ldots$

Floyd-Warshall Code

* Initialize d = weight matrix
* $\operatorname{for}(\mathrm{k}=0$; $\mathrm{k}<\mathrm{N}$; $\mathrm{k}++$)

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad \text { for }(j=0 ; j<N ; j++) \\
& \quad \text { if }(d[i][j]>d[i][k]+d[k][j]) \\
& \quad d[i][j]=d[i][k]+d[k][j] ;
\end{aligned}
$$

** Additionally, we can store the actual path by keeping a "midpoint" matrix

Transitive Closure

** For any nodes i, j, is there a path from i to j ?
** Instead of computing shortest paths, just compute Boolean if a path exists

* path(i, $, \mathrm{j}, \mathrm{k})=\operatorname{path}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1) \mathrm{OR}$ path(i,k,k-1) AND path(k,j,k-1)

Maximum Flow

* Consider a graph representing flow capacity
* Directed graph with source and sink nodes
* Physical analogy: water pipes
* Each edge weight represents the capacity: how much "water" can run through the pipe from source to sink?

Max Flow Algorithm

* Create 2 copies of original graph: flow graph and residual graph
** The flow graph tells us how much flow we have currently on each edge
* The residual graph tells us how much flow is available on each edge

粦 Initially, the residual graph is the original graph

Augmenting Path

* Find any path in residual graph from source to sink类 called an augmenting path.
* The minimum weight along path can be added as flow to the flow graph
** But we don't want to commit to this flow; add a reverse-direction undo edge to the residual graph

Running Times

** If integer weights, each augmenting path increases flow by at least 1

* Costs $\mathrm{O}(|\mathrm{E}|)$ to find an augmenting path
* For max flow f, finding max flow (FloydFulkerson) costs $O(f|E|)$
* Choosing shortest unweighted path (EdmondsKarp), $O\left(|V||E|^{2}\right)$

Minimum Spanning Tree Problem definition

** Given connected graph G, find the connected, acyclic subgraph \mathbf{T} with minimum edge weight
** A tree that includes every node is called a spanning tree

粦 The method to find the MST is another example of a greedy algorithm

Motivation for Greed

** Consider any spanning tree
** Adding another edge to the tree creates exactly one cycle

* Removing an edge from that cycle restores the tree structure

Prim's Algorithm

米 Grow the tree like Dijkstra's Algorithm
** Dijkstra's: grow the set of vertices to which we know the shortest path
** Prim's: grow the set of vertices we have added to the minimum tree

* Store shortest edge $\mathbf{D}[$] from each node to tree

Prim's Algorithm

* Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere
* Repeat until all nodes are in tree:
* Add the node \mathbf{v} with shortest known distance

米 Update distances of adjacent nodes w:
$D[w]=\min (D[w]$, weight $(\mathbf{v}, \mathbf{w}))$

Prim's Algorithm Justification

粦 At any point, we can consider the set of nodes in the tree \mathbf{T} and the set outside the tree \mathbf{Q}

类 Whatever the MST structure of the nodes in \mathbf{Q}, at least one edge must connect the MSTs of \mathbf{T} and \mathbf{Q}

* The greedy edge is just as good structurally as any other edge, and has minimum weight

Prim’s Running Time

** Each stage requires one deleteMin $\mathrm{O}(\log |\mathrm{V}|)$, and there are exactly $|\mathrm{V}|$ stages

* We update keys for each edge, updating the key costs $\mathrm{O}(\log |\mathrm{V}|)$ (either an insert or a decreaseKey)

类 Total time: $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Kruskal's Algorithm

* Somewhat simpler conceptually, but more challenging to implement
* Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist
* Each added edge performs a union on two trees; perform unions until there is only one tree
* Need special ADT for unions (Disjoint Set... we'll cover it later)

Kruskal's Justification

* At each stage, the greedy edge e connects two nodes \mathbf{v} and \mathbf{w}

米 Eventually those two nodes must be connected;
** we must add an edge to connect trees including \mathbf{v} and \mathbf{w}

* We can always use \mathbf{e} to connect \mathbf{v} and \mathbf{w}, which must have less weight since it's the greedy choice

Kruskal's Running Time

* First, buildHeap costs $\mathrm{O}(|\mathrm{E}|)$
** In the worst case, we have to call |E| deleteMins
* Total running time $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$; but $|E| \leq|V|^{2}$

$$
O\left(|E| \log |V|^{2}\right)=O(2|E| \log |V|)=O(|E| \log |V|)
$$

The Seven Bridges of Königsberg

http://math.dartmouth.edu/~euler/docs/originals/E053.pdf

* Königsburg Bridge Problem: can one walk across the seven bridges and never cross the same bridge twice?
* Euler solved the problem by inventing graph theory

Euler Paths and Circuits

** Euler path - a (possibly cyclic) path that crosses each edge exactly once

* Euler circuit - an Euler path that starts and ends on the same node

Euler's Proof

* Does an Euler path exist? No

米 Nodes with an odd degree must either be the start or end of the path
** Only one node in the Königsberg graph has odd degree; the path cannot exist
** What about an Euler circuit?

Finding an Euler Circuit

米 Run a partial DFS; search down a path until you need to backtrack (mark edges instead of nodes)

* At this point, you will have found a circuit
* Find first node along the circuit that has unvisited edges; run a DFS starting with that edge
** Splice the new circuit into the main circuit, repeat until all edges are visited

Euler Circuit Running Time

* All our DFS's will visit each edge once, so at least $\mathrm{O}(|\mathrm{E}|)$
** Must use a linked list for efficient splicing of path, so searching for a vertex with unused edge can be expensive
* but cleverly saving the last scanned edge in each adjacency list can prevent having to check edges more than once, so also $\mathrm{O}(|\mathrm{E}|)$

Complexity Classes

\mathbf{P} - solvable in polynomial time

* NP - solvable in polynomial time by a nondeterministic computer
** i.e., you can check a solution in polynomial time
* NP-complete - a problem in NP such that any problem in NP is polynomially reducible to it
** Undecidable - no algorithm can solve the problem

Probable Complexity Class Hierarchy

NP
NP-Complete

NP-Hard
Undecidable

Polynomial Time P

类 All the algorithms we cover in class are solvable in polynomial time
** An algorithm that runs in polynomial time is considered efficient

米 A problem solvable in polynomial time is considered tractable

Nondeterministic Polynomial Time NP

* Consider a magical nondeterministic computer * infinitely parallel computer
* Equivalently, to solve any problem, check every possible solution in parallel

米 return one that passes the check

NP-Complete

* Special class of NP problems that can be used to solve any other NP problem
* Hamiltonian Path, Satisfiability, Graph Coloring etc.
* NP-Complete problems can be reduced to other NP-Complete problems:
* polynomial time algorithm to convert the input and output of algorithms

NP-Hard

** A problem is NP-Hard if it is at least as complex as all NP-Complete problems

* NP-hard problems may not even be NP

NP-Complete Problems Satisfiability

** Given Boolean expression of N variables, can we set variables to make expression true?

* First NP-Complete proof because Cook's Theorem gave polynomial time procedure to convert any NP problem to a Boolean expression
** I.e., if we have efficient algorithm for Satisfiability, we can efficiently solve any NP problem

NP-Complete Problems Graph Coloring

** Given a graph is it possible to color with \mathbf{k} colors all nodes so no adjacent nodes are the same color?

* Coloring countries on a map

类 Sudoku is a form of this problem. All squares in a row, column and blocks are connected. $\mathbf{k}=9$

NP-Complete Problems Hamiltonian Path

** Given a graph with N nodes, is there a path that visits each node exactly once?

NP-Hard Problems Traveling Salesman

米 Closely related to Hamiltonian Path problem
** Given complete graph G, find a path that visits all nodes that costs less than some constant \mathbf{k}
** If we are able to solve TSP, we can find a Hamiltonian Path; set connected edge weight to constant, disconnected to infinity

* TSP is NP-hard

Equivalence Relations

4* An equivalence relation is a relation operator that observes three properties:

* Reflexive: (a R a), for all a

米 Symmetric: ($\mathrm{a} R \mathrm{~b}$) if and only if ($\mathrm{b} R \mathrm{a}$)

* Transitive: ($\mathrm{a} R \mathrm{~b}$) and ($\mathrm{b} R \mathrm{c}$) implies ($\mathrm{a} R \mathrm{c}$)
* Put another way, equivalence relations check if operands are in the same equivalence class

Equivalence Classes

** Equivalence class: the set of elements that are all related to each other via an equivalence relation

* Due to transitivity, each member can only be a member of one equivalence class
* Thus, equivalence classes are disjoint sets
* Choose any distinct sets S and $\mathrm{T}, S \cap T=\emptyset$

Disjoint Set ADT

米 Collection of objects, each in an equivalence class

* find (x) returns the class of the object
* union (x, y) puts x and y in the same class

米 as well as every other relative of x and y

* Even less information than hash; no keys, no ordering

Data Structure

* Store elements in equivalence (general) trees

米 Use the tree's root as equivalence class label

* find returns root of containing tree
* union merges tree
* Since all operations only search up the tree, we can store in an array

Implementation

** Index all objects from 0 to $\mathrm{N}-1$

* Store a parent array such that $\mathbf{s}[\mathrm{i}]$ is the index of i's parent
** If \mathbf{i} is a root, store the negative size of its tree*
* find follows s[i] until negative, returns index
** union (x, y) points the root of x 's tree to the root of y 's tree

Analysis

米 find costs the depth of the node
类 union costs $\mathrm{O}(1)$ after finding the roots
＊Both operations depend on the height of the tree
粦 Since these are general trees，the trees can be arbitrarily shallow

Union by Size

* Claim: if we union by pointing the smaller tree to the larger tree's root, the height is at most $\log \mathrm{N}$
** Each union increases the depths of nodes in the smaller trees

米 Also puts nodes from the smaller tree into a tree at least twice the size

米 We can only double the size log N times

Union by Size Figure

Union by Height

* Similar method, attach the tree with less height to the taller tree
* Shorter tree's nodes join a tree at least twice the height, overall height only increases if trees are equal height

Union by Height Figure

Path Compression

** Even if we have $\log \mathrm{N}$ tall trees, we can keep calling find on the deepest node repeatedly, costing $\mathrm{O}(\mathrm{M} \log \mathrm{N})$ for M operations

粦 Additionally, we will perform path compression during each find call

* Point every node along the find path to root

Path Compression

 Figure

Union by Rank

* Path compression messes up union-by-height because we reduce the height when we compress
* We could fix the height, but this turns out to gain little, and costs find operations more

粦 Instead, rename to union by rank, where rank is just an overestimate of height

* Since heights change less often than sizes, rank/height is usually the cheaper choice

Worst Case Bound

** A slightly looser, but easier to prove/understand bound is that any sequence of $M=\Omega(N)$ operations will cost $\mathbf{O}\left(\mathbf{M} \log { }^{*} \mathbf{N}\right)$ running time
** log* N is the number of times the logarithm needs to be applied to N until the result is ≤ 1

* Proof idea: upper bound the number of nodes per rank, partition ranks into groups

Sorting

粦 Given array A of size N , reorder A so its elements are in order.

* "In order" with respect to a consistent comparison function

The Bad News

* Sorting algorithms typically compare two elements and branch according to the result of comparison
** Theorem: An algorithm that branches from the result of pairwise comparisons must use $\Omega(N \log N)$ operations to sort worst-case input
* Proof via decision tree

Counting Sort

** Another simple sort for integer inputs

* 1. Treat integers as array indices (subtract min)
* 2. Insert items into array indices
* 3. Read array in order, skipping empty entries

Bucket Sort

* Like Counting Sort, but less wasteful in space
* Split the input space into \mathbf{k} buckets
* Put input items into appropriate buckets
* Sort the buckets using favorite sorting algorithm

Radix Sort

* Trie method and CountingSort are forms of Radix Sort
** Radix Sort sorts by looking at one digit at a time
* We can start with the least significant digit or the most significant digit

米 least significant digit first provides a stable sort

* trie's use most significant, so let's look at least...

Radix Sort with Least Significant Digit

* CountingSort according to the least significant digit

米 Repeat: CountingSort according to the next least significant digit

米 Each step must be stable

* Running time: $\mathbf{O}(\mathbf{N k})$ for maximum of \mathbf{k} digits
** Space: $\mathbf{O}(\mathbf{N}+\mathbf{b})$ for base-b number system*

Comparison Sort Characteristics

* Worst case running time

娄 Worst case space usage (can it run in place?)

* Stability
* Average running time/space

类 (simplicity)

Insertion Sort

类 Assume first \mathbf{p} elements are sorted. Insert ($\mathbf{p}+\mathbf{1}$)'th element into appropriate location.
** Save $\mathbf{A}[\mathbf{p}+1]$ in temporary variable \mathbf{t}, shift sorted elements greater than \mathbf{t}, and insert \mathbf{t}

* Stable
* Running time $O\left(N^{2}\right)$
* In place $\mathbf{O}(1)$ space

Insertion Sort Analysis

** When the sorted segment is \mathbf{i} elements, we may need up to i shifts to insert the next element

$$
\sum_{i=2}^{N} i=N(N-1) / 2-1=O\left(N^{2}\right)
$$

* Stable because elements are visited in order and equal elements are inserted after its equals
* Algorithm Animation

Shellsort

米 Essentially splits the array into subarrays and runs Insertion Sort on the subarrays
** Uses an increasing sequence, h_{1}, \ldots, h_{t}, such that $h_{1}=1$.

* At phase \mathbf{k}, all elements h_{k} apart are sorted; the array is called h_{k}-sorted
** for every $\mathbf{i}, A[i] \leq A\left[i+h_{k}\right]$

Shell Sort Correctness

** Efficiency of algorithm depends on that elements sorted at earlier stages remain sorted in later stages

* Unstable. Example: 2-sort the following: [5 5 1]

Increment Sequences

* Shell suggested the sequence $h_{t}=\lfloor N / 2\rfloor$ and $h_{k}=\left\lfloor h_{k+1} / 2\right\rfloor$, which was suboptimal
** A better sequence is $h_{k}=2^{k}-1$
** Shellsort using better sequence is proven $\Theta\left(N^{3 / 2}\right)$
** Often used for its simplicity and sub-quadratic time, even though $\mathbf{O}(\mathbf{N} \log \mathbf{N})$ algorithms exist
* Animation

Heapsort

* Build a max heap from the array: $\mathbf{O}(\mathbf{N})$

米 call deleteMax \mathbf{N} times: $\mathbf{O}(\mathbf{N} \log \mathbf{N})$

* \mathbf{O} (1) space
* Simple if we abstract heaps
* Unstable
* Animation

Mergesort

* Quintessential divide-and-conquer example

米 Mergesort each half of the array, merge the results
** Merge by iterating through both halves, compare the current elements, copy lesser of the two into output array

* Animation

Mergesort Recurrence

** Merge operation is costs $\mathbf{O}(\mathbf{N})$
类 $\mathbf{T}(\mathbf{N})=\mathbf{2} \mathbf{T}(\mathbf{N} / 2)+\mathbf{N}$

* We solved this recurrence for the recursive solutions to the homework 1 theory problem

$$
\begin{aligned}
& =\sum_{i=0}^{\log N} 2^{i} c \frac{N}{2^{i}} \\
& =\sum_{i=0}^{\log N} c N=c N \log N
\end{aligned}
$$

Quicksort

** Choose an element as the pivot

* Partition the array into elements greater than pivot and elements less than pivot
* Quicksort each partition

Choosing a Pivot

* The worst case for Quicksort is when the partitions are of size zero and $\mathbf{N - 1}$

米 Ideally, the pivot is the median, so each partition is about half

* If your input is random, you can choose the first element, but this is very bad for presorted input!
* Choosing randomly works, but a better method is...

Median-of-Three

* Choose three entries, use the median as pivot
** If we choose randomly, $\mathbf{2 / N}$ probability of worst case pivots
* Median-of-three gives $\mathbf{0}$ probability of worst case, tiny probability of 2 nd-worst case. (Approx. $2 / N^{3}$)
* Randomness less important, so choosing (first, middle, last) works reasonably well

Partitioning the Array

＊＊Once pivot is chosen，swap pivot to end of array． Start counters $\mathbf{i}=1$ and $\mathbf{j}=\mathbf{N}-\mathbf{1}$

米 Intuition：i will look at less－than partition， \mathbf{j} will look at greater－than partition

粦 Increment i and decrement \mathbf{j} until we find elements that don＇t belong（A［i］＞pivot or A［j］＜pivot）

类 Swap（A［i］，A［j］），continue increment／decrements
＊When \mathbf{i} and \mathbf{j} touch，swap pivot with $\mathbf{A}[\mathbf{j}]$

Quicksort Worst Case

* Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
** We don't know the size of the partitions, so let \mathbf{i} be the size of the first partition
* $\mathbf{T}(\mathbf{N})=\mathbf{T}(\mathbf{i})+\mathbf{T}(\mathrm{N}-\mathrm{i}-1)+\mathbf{N}$
* Worst case is $\mathbf{T}(\mathbf{N})=\mathbf{T}(\mathbf{N}-1)+\mathbf{N}$

Quicksort Properties

** Unstable

* Average time $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

粦 Worst case time $O\left(N^{2}\right)$

* Space $\mathrm{O}(\log \mathrm{N}) / O\left(N^{2}\right)$ because we need to store the pivots

Summary

	Worst Case Time	Average Time	Space	Stable?
Selection	$O\left(N^{2}\right)$	$O\left(N^{2}\right)$	$O(1)$	No
Insertion	$O\left(N^{2}\right)$	$O\left(N^{2}\right)$	$O(1)$	Yes
Shell	$O\left(N^{3 / 2}\right)$	$?$	$O(1)$	No
Heap	$O(N \log N)$	$O(N \log N)$	$O(1)$	No
Merge	$O(N \log N)$	$O(N \log N)$	$O(N) / O(1)$	Yes/No
Quick	$O\left(N^{2}\right)$	$O(N \log N)$	$O(\log N)$	No

Selection

* Recall selection problem: best solution so far was Heapselect
* Running time: $\mathbf{O}(\mathbf{N}+\mathbf{k} \log \mathbf{N})$
* We should expect a faster algorithm since selection should be easier than sorting
* Quick Select: choose a pivot, partition array, recurse on the partition that contains k'th element

Quickselect Worst Case

* Quickselect only recurses one one of the subproblems
* However, in the worst case, pivot only eliminates one element:
* $\mathbf{T}(\mathrm{N})=\mathbf{T}(\mathrm{N}-1)+\mathrm{N}$
* Same as Quicksort worst case

External Sorting

* So far, we have looked at sorting algorithms when the data is all available in RAM

米 Often, the data we want to sort is so large, we can only fit a subset in RAM at any time

* We could run standard sorting algorithms, but then we would be swapping elements to and from disk
** Instead, we want to minimize disk I/O, even if it means more CPU work

MergeSort

* We can speed up external sorting if we have two or more disks (with free space) via Mergesort
* One nice feature of Mergesort is the merging step can be done online with streaming data
* Read as much data as you can, sort, write to disk, repeat for all data, write output to alternating disks
** merge outputs using 4 disks

Simplified Running Time Analysis

米 Suppose random disk i/o cost 10,000 ns

* Sequential disk i/o cost 100 ns
* RAM swaps/comparisons cost 10 ns
** Naive sorting: $10000 \mathrm{~N} \log \mathrm{~N}$
** Assume M elements fit in RAM. External mergesort: $10 \mathrm{~N} \log \mathrm{M}+100 \mathrm{~N}$ (\# of sweeps through data)

Counting Merges

* After initial sorting, N/M sorted subsets distributed between 2 disks
** After each run, each pair is merged into a sorted subset twice as large.

类 Full data set is sorted after $\log (\mathbf{N} / \mathbf{M})$ runs

* External sorting: $10 N \log M+100 N \log (N / M)$

