Data Structures and Algorithms

Session 27. May 4th, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Annoucements and Today's Plan

* Final Exam Wednesday May 13th, 1:10 PM - 4 PM Mudd 633

Course evaluation

Review 2nd half of semester

* Lots of slides, I'll go fast but ask questions if you have them

Final Topics Overview

- Big-Oh definitions (Omega, Theta)
- * Arraylists/Linked Lists
- Stacks/Queues
- Binary Search Trees: AVL, Splay
- Tries
- # Heaps
- Huffman Coding Trees

- Hash Tables: Separate Chaining, Probing
- Graphs: Topological Sort, Shortest Path, Max-Flow, Min Spanning Tree, Euler
- Complexity Classes
- Disjoint Sets
- Sorting: Insertion Sort, Shell Sort, Merge Sort, Quick Sort, Radix Sort, Quick Select

Big Oh Definitions

* For N greater than some constant, we have the following definitions:

$$T(N) = O(f(N)) \leftarrow T(N) \le cf(N)$$

 $T(N) = \Omega(g(N)) \leftarrow T(N) \ge cf(N)$

$$T(N) = \Theta(h(N)) \leftarrow \begin{array}{c} T(N) = O(h(N)), \\ T(N) = \Omega(h(N)) \end{array}$$

* There exists some constant c such that cf(N) bounds T(N)

Big Oh Definitions

* Alternately, O(f(N)) can be thought of as meaning $T(N) = O(f(N)) \leftarrow \lim_{N \to \infty} f(N) \ge \lim_{N \to \infty} T(N)$

* Big-Oh notation is also referred to as asymptotic analysis, for this reason.

Huffman's Algorithm

- * Compute character frequencies
- * Create forest of 1-node trees for all the characters.
- Let the weight of the trees be the sum of the frequencies of its leaves
- Repeat until forest is a single tree: Merge the two trees with minimum weight. Merging sums the weights.

Huffman Details

- * We can manage the forest with a priority queue:
- # buildHeap first,
 - * find the least weight trees with 2 deleteMins,
 - * after merging, insert back to heap.
- In practice, also have to store coding tree, but the payoff comes when we compress larger strings

Hash Table ADT

- Insert or delete objects by key
- * Search for objects by key
- *** No** order information whatsoever

Ideally O(1) per operation

Hash Functions

- * A hash function maps any key to a valid array position
 - * Array positions range from 0 to N-1
 - * Key range possibly unlimited

Hash Functions

- * For integer keys, (key mod N) is the simplest hash function
- In general, any function that maps from the space of keys to the space of array indices is valid
- * but a good hash function spreads the data out evenly in the array;
- * A good hash function avoids **collisions**

Collisions

* A collision is when two distinct keys map to the same array index

- * Choose h(x) to minimize collisions, but collisions are inevitable
- * To implement a hash table, we must decide on collision resolution policy

Collision Resolution

- * Two basic strategies
 - Strategy 1: Separate Chaining
 - Strategy 2: Probing; lots of variants

Strategy 1: Separate Chaining

* Keep a list at each array entry

* Insert(x): find h(x), add to list at h(x)

- Delete(x): find h(x), search list at h(x) for x, delete
- Search(x): find h(x), search list at h(x)
- We could use a BST or other ADT, but if h(x) is a good hash function, it won't be worth the overhead

Strategy 2: Probing

- # If h(x) is occupied, try h(x)+f(i) mod N
 for i = 1 until an empty slot is found
- Many ways to choose a good f(i)
- Simplest method: Linear Probing

⋇ f(i) = i

Primary Clustering

- If there are many collisions, blocks of occupied cells form: primary clustering
- * Any hash value inside the cluster adds to the end of that cluster
- * (a) it becomes more likely that the next hash value will collide with the cluster, and (b) collisions in the cluster get more expensive

Quadratic Probing

- ***** f(i) = i^2
- * Avoids primary clustering
- Sometimes will never find an empty slot even if table isn't full!
- * Luckily, if load factor $\lambda \leq \frac{1}{2}\,$, guaranteed to find empty slot

Double Hashing

* If $h_1(x)$ is occupied, probe according to $f(i) = i \times h_2(x)$

* 2nd hash function must never map to 0

* Increments differently depending on the key

Rehashing

- * Like ArrayLists, we have to guess the number of elements we need to insert into a hash table
- Whatever our collision policy is, the hash table becomes inefficient when load factor is too high.
- * To alleviate load, **rehash**:
 - * create larger table, scan current table, insert items into new table using new hash function

Graph Terminology

- * A graph is a set of nodes and edges
 - * nodes aka vertices
 - # edges aka arcs, links
- # Edges exist between pairs of nodes
 - # if nodes x and y share an edge, they are
 adjacent

Graph Terminology

- * Edges may have weights associated with them
- # Edges may be directed or undirected
- * A path is a series of adjacent vertices
 - * the length of a path is the sum of the edge weights along the path (1 if unweighted)
- * A cycle is a path that starts and ends on a node

Graph Properties

- * An undirected graph with no cycles is a tree
- * A directed graph with no cycles is a special class called a directed acyclic graph (DAG)
- In a connected graph, a path exists between every pair of vertices
- * A complete graph has an edge between every pair of vertices

Implementation

* Option 1:

Store all nodes in an indexed list

* Represent edges with adjacency matrix

* Option 2:

* Explicitly store adjacency lists

Topological Sort

* Problem definition:

- * Given a directed acyclic graph G, order the nodes such that for each edge $(v_i, v_j) \in E$, v_i is before v_j in the ordering.
- * e.g., scheduling errands when some tasks depend on other tasks being completed.

Topological Sort Better Algorithm

- * 1. Compute all indegrees
- # 2. Put all indegree 0 nodes into a Collection
- * 3. Print and remove a node from Collection
- * 4. Decrement indegrees of the node's neighbors.
- * 5. If any neighbor has indegree 0, place in Collection. Go to 3.

Topological Sort Running time

- * Initial indegree computation: O(|E|)
 - * Unless we update indegree as we build graph
- * |V| nodes must be enqueued/dequeued
- * Dequeue requires operation for outgoing edges
- * Each edge is used, but never repeated
- * Total running time O(|V| + |E|)

Shortest Path

- * Given $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, and a node $\mathbf{s} \in \mathbf{V}$, find the shortest (weighted) path from \mathbf{s} to every other vertex in \mathbf{G} .
- Motivating example: subway travel
 - * Nodes are junctions, transfer locations
 - # Edge weights are estimated time of travel

Breadth First Search

- * Like a level-order traversal
- * Find all adjacent nodes (level 1)
- * Find new nodes adjacent to level 1 nodes (level 2)
- # ... and so on
- * We can implement this with a queue

Unweighted Shortest Path Algorithm

* Set node s' distance to 0 and enqueue s.

* Then repeat the following:

Dequeue node v. For unset neighbor u:

* set neighbor u's distance to v's distance +1

* mark that we reached v from u

* enqueue u

Weighted Shortest Path

- * The problem becomes more difficult when edges have different weights
- Weights represent different costs on using that edge
- * Standard algorithm is **Dijkstra's Algorithm**

Dijkstra's Algorithm

- * Keep distance overestimates D(v) for each node v (all non-source nodes are initially infinite)
- * 1. Choose node v with smallest unknown distance
- # 2. Declare that v's shortest distance is known
- # 3. Update distance estimates for neighbors

Updating Distances

- * For each of v's neighbors, w,
- # if min(D(v)+ weight(v,w), D(w))
 - * i.e., update D(w) if the path going through v is cheaper than the best path so far to w

Proof by Contradiction (Sketch)

- * Contradiction: Dijkstra's finds a shortest path to node w through v, but there exists an even shorter path
- * This shorter path must pass from inside our known set to outside.
- Call the 1st node in cheaper path outside our set u

* The path to **u** must be shorter than the path to **w**

But then we would have chosen u instead

Computational Cost

- * Keep a priority queue of all unknown nodes
- * Each stage requires a deleteMin, and then some decreaseKeys (the # of neighbors of node)
- We call decreaseKey once per edge, we call deleteMin once per vertex
- * Both operations are O(log |V|)
- * Total cost: $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$

All Pairs Shortest Path

- Dijkstra's Algorithm finds shortest paths from one node to all other nodes
- What about computing shortest paths for all pairs of nodes?
- * We can run Dijkstra's |V| times. Total cost: $O(|V|^3)$
- * Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)

Recursive Motivation

- * Consider the set of numbered nodes 1 through k
- * The shortest path between any node i and j using only nodes in the set {1, ..., k} is the minimum of
 - * shortest path from i to j using nodes {1, ..., k-1}
 - * shortest path from i to j using node k

Dynamic Programming

- Instead of repeatedly computing recursive calls, store lookup table
- * To compute path(i,j,k) for any i,j, we only need to look up path(-,-, k-1)
 - * but never k-2, k-3, etc.
- We can incrementally compute the path matrix for k=0, then use it to compute for k=1, then k=2...
Floyd-Warshall Code

* Initialize d = weight matrix

* Additionally, we can store the actual path by keeping a "midpoint" matrix

Transitive Closure

* For any nodes i, j, is there a path from i to j?

Instead of computing shortest paths, just compute Boolean if a path exists

Maximum Flow

- * Consider a graph representing flow capacity
- * Directed graph with source and sink nodes
- * Physical analogy: water pipes
 - * Each edge weight represents the capacity: how much "water" can run through the pipe from source to sink?

Max Flow Algorithm

* Create 2 copies of original graph: flow graph and residual graph

- * The flow graph tells us how much flow we have currently on each edge
- * The residual graph tells us how much flow is available on each edge
- * Initially, the residual graph is the original graph

Augmenting Path

* Find any path in residual graph from source to sink

- * called an **augmenting path**.
- * The minimum weight along path can be added as flow to the flow graph
- But we don't want to commit to this flow; add a reverse-direction undo edge to the residual graph

Running Times

- If integer weights, each augmenting path increases flow by at least 1
- * Costs O(|E|) to find an augmenting path
- * For max flow f, finding max flow (Floyd-Fulkerson) costs O(f|E|)
- * Choosing shortest unweighted path (Edmonds-Karp), $O(|V||E|^2)$

Minimum Spanning Tree Problem definition

- Given connected graph G, find the connected, acyclic subgraph T with minimum edge weight
 - * A tree that includes every node is called a spanning tree
- * The method to find the MST is another example of a greedy algorithm

Motivation for Greed

- * Consider any spanning tree
- * Adding another edge to the tree creates exactly one cycle
- Removing an edge from that cycle restores the tree structure

Prim's Algorithm

- # Grow the tree like Dijkstra's Algorithm
- Dijkstra's: grow the set of vertices to which we know the shortest path
- * Prim's: grow the set of vertices we have added to the minimum tree
- Store shortest edge D[] from each node to tree

Prim's Algorithm

- Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere
- Repeat until all nodes are in tree:
 - * Add the node v with shortest known distance
 - # Update distances of adjacent nodes w:
 D[w] = min(D[w], weight(v,w))

Prim's Algorithm Justification

- * At any point, we can consider the set of nodes in the tree T and the set outside the tree Q
- Whatever the MST structure of the nodes in Q, at least one edge must connect the MSTs of T and Q
- * The greedy edge is just as good structurally as any other edge, and has minimum weight

Prim's Running Time

- * Each stage requires one deleteMin O(log |V|), and there are exactly |V| stages
- We update keys for each edge, updating the key costs O(log |V|) (either an insert or a decreaseKey)
- * Total time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

Kruskal's Algorithm

- Somewhat simpler conceptually, but more challenging to implement
- * Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist
- * Each added edge performs a union on two trees; perform unions until there is only one tree
- * Need special ADT for unions (Disjoint Set... we'll cover it later)

Kruskal's Justification

- * At each stage, the greedy edge e connects two nodes v and w
- * Eventually those two nodes must be connected;
 - * we must add an edge to connect trees including v and w
- We can always use e to connect v and w, which must have less weight since it's the greedy choice

Kruskal's Running Time

- # First, buildHeap costs O(|E|)
- In the worst case, we have to call |E| deleteMins
- * Total running time O(|E| log |E|); but $|E| \le |V|^2$ $O(|E| \log |V|^2) = O(2|E| \log |V|) = O(|E| \log |V|)$

The Seven Bridges of Königsberg

http://math.dartmouth.edu/~euler/docs/originals/E053.pdf

- * Königsburg Bridge Problem: can one walk across the seven bridges and never cross the same bridge twice?
- * Euler solved the problem by *inventing* graph theory

Euler Paths and Circuits

- * Euler path a (possibly cyclic) path that crosses each edge exactly once
- * Euler circuit an Euler path that starts and ends on the same node

Euler's Proof

- Does an Euler path exist? No
- * Nodes with an odd degree must either be the start or end of the path
- Only one node in the Königsberg graph has odd degree; the path cannot exist
- What about an Euler circuit?

Finding an Euler Circuit

- Run a partial DFS; search down a path until you need to backtrack (mark edges instead of nodes)
- * At this point, you will have found a circuit
- * Find first node along the circuit that has unvisited edges; run a DFS starting with that edge
- Splice the new circuit into the main circuit, repeat until all edges are visited

Euler Circuit Running Time

- * All our DFS's will visit each edge once, so at least O(|E|)
- Must use a linked list for efficient splicing of path, so searching for a vertex with unused edge can be expensive
- * but cleverly saving the last scanned edge in each adjacency list can prevent having to check edges more than once, so also O(|E|)

Complexity Classes

- * P solvable in polynomial time
- * NP solvable in polynomial time by a nondeterministic computer
 - * i.e., you can check a solution in polynomial time
- * NP-complete a problem in NP such that any problem in NP is polynomially reducible to it
- * Undecidable no algorithm can solve the problem

Polynomial Time **P**

- * All the algorithms we cover in class are solvable in polynomial time
- * An algorithm that runs in polynomial time is considered efficient
- * A problem solvable in polynomial time is considered tractable

Nondeterministic Polynomial Time **NP**

* Consider a magical nondeterministic computer

- * infinitely parallel computer
- * Equivalently, to solve any problem, check every possible solution in parallel

* return one that passes the check

NP-Complete

- Special class of NP problems that can be used to solve any other NP problem
- # Hamiltonian Path, Satisfiability, Graph Coloring etc.
- * NP-Complete problems can be reduced to other NP-Complete problems:
 - * polynomial time algorithm to convert the input and output of algorithms

NP-Hard

- * A problem is NP-Hard if it is at least as complex as all NP-Complete problems
- ** NP-hard problems may not even be NP

NP-Complete Problems Satisfiability

- Given Boolean expression of N variables, can we set variables to make expression true?
- * First NP-Complete proof because Cook's Theorem gave polynomial time procedure to convert any NP problem to a Boolean expression
- * I.e., if we have efficient algorithm for Satisfiability, we can efficiently solve any NP problem

NP-Complete Problems Graph Coloring

- Given a graph is it possible to color with k colors all nodes so no adjacent nodes are the same color?
- Coloring countries on a map
- Sudoku is a form of this problem. All squares in a row, column and blocks are connected. k = 9

NP-Complete Problems Hamiltonian Path

* Given a graph with N nodes, is there a path that visits each node exactly once?

NP-Hard Problems Traveling Salesman

Closely related to Hamiltonian Path problem

- Given complete graph G, find a path that visits all nodes that costs less than some constant k
- If we are able to solve TSP, we can find a Hamiltonian Path; set connected edge weight to constant, disconnected to infinity

* TSP is NP-hard

Equivalence Relations

- * An equivalence relation is a relation operator that observes three properties:
 - *** Reflexive**: (a R a), for all a
 - **Symmetric**: (a R b) if and only if (b R a)
 - *** Transitive**: (a R b) and (b R c) implies (a R c)
- * Put another way, equivalence relations check if operands are in the same equivalence class

Equivalence Classes

- * Equivalence class: the set of elements that are all related to each other via an equivalence relation
- * Due to transitivity, each member can only be a member of one equivalence class
- * Thus, equivalence classes are **disjoint sets**
 - * Choose any distinct sets S and T, $S \cap T = \emptyset$

Disjoint Set ADT

- * Collection of objects, each in an equivalence class
- # find(x) returns the class of the object
- * union(x,y) puts x and y in the same class
 - * as well as every other relative of x and y
- * Even less information than hash; no keys, no ordering

Data Structure

- Store elements in equivalence (general) trees
- # Use the tree's root as equivalence class label
- # find returns root of containing tree
- # union merges tree
- Since all operations only search up the tree, we can store in an array

Implementation

- Index all objects from 0 to N-1
- Store a parent array such that s[i] is the index of i's parent
- * If **i** is a root, store the negative size of its tree*
- # find follows s[i] until negative, returns index
- *** union**(x,y) points the root of x's tree to the root of y's tree

Analysis

- **# find** costs the depth of the node
- # union costs O(1) after finding the roots
- * Both operations depend on the height of the tree
- Since these are general trees, the trees can be arbitrarily shallow
Union by Size

- Claim: if we union by pointing the smaller tree to the larger tree's root, the height is at most log N
- * Each union increases the depths of nodes in the smaller trees
- * Also puts nodes from the smaller tree into a tree at least twice the size
 - * We can only double the size log N times

Union by Height

- Similar method, attach the tree with less height to the taller tree
- Shorter tree's nodes join a tree at least twice the height, overall height only increases if trees are equal height

Path Compression

- * Even if we have log N tall trees, we can keep calling **find** on the deepest node repeatedly, costing O(M log N) for M operations
- * Additionally, we will perform path compression during each find call
 - * Point every node along the find path to root

Union by Rank

- * Path compression messes up union-by-height because we reduce the height when we compress
- We could fix the height, but this turns out to gain little, and costs find operations more
- Instead, rename to union by rank, where rank is just an overestimate of height
- Since heights change less often than sizes, rank/height is usually the cheaper choice

Worst Case Bound

- * A slightly looser, but easier to prove/understand bound is that any sequence of $M = \Omega(N)$ operations will cost **O(M log* N)** running time
- * log* N is the number of times the logarithm needs to be applied to N until the result is ≤ 1
- * Proof idea: upper bound the number of nodes per rank, partition ranks into groups

Sorting

- # Given array A of size N, reorder A so its elements are in order.
 - * "In order" with respect to a consistent comparison function

The Bad News

- * Sorting algorithms typically compare two elements and branch according to the result of comparison
- * Theorem: An algorithm that branches from the result of pairwise comparisons must use $\Omega(N \log N)$ operations to sort worst-case input
- * Proof via decision tree

Counting Sort

- * Another simple sort for integer inputs
- # 1. Treat integers as array indices (subtract min)
- * 2. Insert items into array indices
- * 3. Read array in order, skipping empty entries

Bucket Sort

- * Like Counting Sort, but less wasteful in space
- * Split the input space into **k** buckets
- * Put input items into appropriate buckets
- * Sort the buckets using favorite sorting algorithm

Radix Sort

- Trie method and CountingSort are forms of Radix Sort
- * Radix Sort sorts by looking at one digit at a time
- We can start with the least significant digit or the most significant digit
 - * least significant digit first provides a **stable** sort
 - * trie's use most significant, so let's look at least...

Radix Sort with Least Significant Digit

- CountingSort according to the least significant digit
- * Repeat: CountingSort according to the next least significant digit
- * Each step must be **stable**
- * Running time: O(Nk) for maximum of k digits
- Space: O(N+b) for base-b number system*

Comparison Sort Characteristics

Worst case running time

* Worst case space usage (can it run in place?)

Stability

* Average running time/space

** (simplicity)

Insertion Sort

* Assume first p elements are sorted. Insert (p+1)'th element into appropriate location.

Save A[p+1] in temporary variable t, shift sorted elements greater than t, and insert t

Stable

- ***** Running time $O(N^2)$
- # In place O(1) space

Insertion Sort Analysis

- * When the sorted segment is i elements, we may need up to i shifts to insert the next element $\sum_{i=2}^{N} i = N(N-1)/2 1 = O(N^2)$
- Stable because elements are visited in order and equal elements are inserted after its equals
- * Algorithm Animation

Shellsort

- * Essentially splits the array into subarrays and runs Insertion Sort on the subarrays
- * Uses an increasing sequence, h_1, \ldots, h_t , such that $h_1 = 1$.
- * At phase **k**, all elements h_k apart are sorted; the array is called h_k -sorted

* for every i, $A[i] \leq A[i+h_k]$

Shell Sort Correctness

* Efficiency of algorithm depends on that elements sorted at earlier stages remain sorted in later stages

* Unstable. Example: 2-sort the following: [5 5 1]

Increment Sequences

- * Shell suggested the sequence $h_t = \lfloor N/2 \rfloor$ and $h_k = \lfloor h_{k+1}/2 \rfloor$, which was suboptimal
- * A better sequence is $h_k = 2^k 1$
- * Shellsort using better sequence is proven $\Theta(N^{3/2})$
- * Often used for its simplicity and sub-quadratic time, even though O(N log N) algorithms exist

* <u>Animation</u>

Heapsort

- Build a max heap from the array: O(N)
- * call deleteMax N times: O(N log N)
- * O(1) space
- Simple if we abstract heaps
- # Unstable
- * Animation

Mergesort

- * Quintessential divide-and-conquer example
- Mergesort each half of the array, merge the results
- Merge by iterating through both halves, compare the current elements, copy lesser of the two into output array

* Animation

Mergesort Recurrence

Merge operation is costs O(N)

★ T(N) = 2 T(N/2) + N

We solved this recurrence for the recursive solutions to the homework 1 theory problem

$$= \sum_{i=0}^{\log N} 2^{i} c \frac{N}{2^{i}}$$
$$= \sum_{i=0}^{\log N} cN = cN \log N$$

Quicksort

- * Choose an element as the **pivot**
- * Partition the array into elements greater than pivot and elements less than pivot
- * Quicksort each partition

Choosing a Pivot

- * The worst case for Quicksort is when the partitions are of size zero and N-1
- Ideally, the pivot is the median, so each partition is about half
- If your input is random, you can choose the first element, but this is very bad for presorted input!
- * Choosing randomly works, but a better method is...

Median-of-Three

- * Choose three entries, use the median as pivot
- If we choose randomly, 2/N probability of worst case pivots
- * Median-of-three gives **0** probability of worst case, tiny probability of 2nd-worst case. (Approx. $2/N^3$)
- * Randomness less important, so choosing (first, middle, last) works reasonably well

- * Once pivot is chosen, swap pivot to end of array. Start counters i=1 and j=N-1
- Intuition: i will look at less-than partition, j will look at greater-than partition
- * Increment i and decrement j until we find elements that don't belong (A[i] > pivot or A[j] < pivot)</p>
- Swap (A[i], A[j]), continue increment/decrements
- When i and j touch, swap pivot with A[j]

Quicksort Worst Case

- Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
- We don't know the size of the partitions, so let i be the size of the first partition

T(N) = T(i) + T(N-i-1) + N

* Worst case is T(N) = T(N-1) + N

Quicksort Properties

Unstable

- * Average time O(N log N)
- ***** Worst case time $O(N^2)$
- * Space O(log N)/ $O(N^2)$ because we need to store the pivots

Summary

	Worst Case Time	Average Time	Space	Stable?
Selection	$O(N^2)$	$O(N^2)$	O(1)	No
Insertion	$O(N^2)$	$O(N^2)$	O(1)	Yes
Shell	$O(N^{3/2})$?	O(1)	No
Неар	$O(N \log N)$	$O(N \log N)$	O(1)	No
Merge	$O(N \log N)$	$O(N \log N)$	O(N)/O(1)	Yes/No
Quick	$O(N^2)$	$O(N \log N)$	$O(\log N)$	No

Selection

* Recall selection problem: best solution so far was Heapselect

- * Running time: O(N+k log N)
- We should expect a faster algorithm since selection should be easier than sorting
- * Quick Select: choose a pivot, partition array, recurse on the partition that contains k'th element

Quickselect Worst Case

- * Quickselect only recurses one one of the subproblems
- * However, in the worst case, pivot only eliminates one element:

★ T(N) = T(N-1) + N

Same as Quicksort worst case

External Sorting

- So far, we have looked at sorting algorithms when the data is all available in RAM
- * Often, the data we want to sort is so large, we can only fit a subset in RAM at any time
- We could run standard sorting algorithms, but then we would be swapping elements to and from disk
 - Instead, we want to minimize disk I/O, even if it means more CPU work

MergeSort

We can speed up external sorting if we have two or more disks (with free space) via Mergesort

- * One nice feature of Mergesort is the merging step can be done online with streaming data
- Read as much data as you can, sort, write to disk, repeat for all data, write output to alternating disks

* merge outputs using 4 disks

Simplified Running Time Analysis

Suppose random disk i/o cost 10,000 ns

- Sequential disk i/o cost 100 ns
- * RAM swaps/comparisons cost 10 ns
- * Naive sorting: 10000 N log N

Assume M elements fit in RAM.
External mergesort:
10 N log M + 100 N (# of sweeps through data)

Counting Merges

- * After initial sorting, N/M sorted subsets distributed between 2 disks
- * After each run, each pair is merged into a sorted subset twice as large.
 - * Full data set is sorted after log(N/M) runs
- * External sorting: 10 N log M + 100 N log (N/M)