
Data Structures and
Algorithms
Session 26. April 29, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 6 due before last class: May 4th

Final Review May 4th

Exam Wednesday May 13th 1:10-4:00 PM, 633

Review

Finish Quicksort discussion,

worst case, average case

Quickselect

worst case, average case

External Sorting

Today's Plan

Examples of Data Structures used in Artificial
Intelligence and Machine Learning

Game trees: minimax, search

Bayesian Graphs

kd-trees

Artificial Intelligence

Sub-field of Computer Science concerned with
algorithms that behave intelligently

or if we're truly ambitious, optimally.

An AI program is commonly called an agent

which makes decisions based on its percepts

A.I. in Games

AI still needs to simplify the environment for its
agents, so games are a nice starting point

Many board games are turn-based, so we can
take some time to compute a good decision at
each turn

Deterministic turn-based games can be
represented as game trees

Game Trees

The root node is the starting state of the game

Children correspond to possible moves

If 2-player, every other level is the computer's turn

The other levels are the adversary's turns

In a simple game, we can consider/store the whole
tree, make decisions based on the subtrees

Partial Tic-Tac-Toe
Game Tree

X

X

X

X O

X O

X

O

X

O

X

O

X

O

X

X X

O

X

X O

X

O X

X

O

O X

X

O

O X

X X

O

O X

X

O X

O X

X

X O

O X

Tree Strategy

Thinking about the game as a tree helps organize
computational strategy

If adversary plays optimally, we can define the
optimal strategy via the minimax algorithm

Assume the adversary will play the optimal move
at the next level. Use that result to decide which
move is optimal at current level.

Result

Simple Tree
Our
Turn

Win Lose Win Win

Lose Win

Result

Numerical Rewards
Our
Turn

+100 -1 +1 +2

-1 +1

Minimax Details

Depth first search (postorder) to find leaves;
propagate information up

Adversary also assume you will play optimally

Impossible to store full tree for most games, use
heuristic measures

e.g., Chess piece values, # controlled squares

Cut off after a certain level

Pruning

We can also ignore parts of the tree if we see a
subtree that can't possibly be better than one we
saw earlier

This is called alpha-beta pruning

Figure from wikipedia article on alpha-beta pruning

Search

Some puzzles can be thought of as trees too

15-puzzle, Rubik's Cube, Sudoku

Discrete moves move from current state to
children states

A.I. wants to find the solution state efficiently

8-puzzle
8 5 3

2 1 4

6 7

8 5 3

2 1 4

6 7

8 5 3

2 1

6 7 4

8 5 3

2 1 4

6 7

8 5 3

2 4

6 1 7

8 5 3

2 1 4

6 7

8 5 3

2 1

6 7 4

8 5

2 1 3

6 7 4

8 5 3

2 1 4

6 7

Simple Idea

Breadth first search; level-order

Try every move from current state

Try 2 moves from current state

Try 3 moves from current state

...

Another Idea

Depth first search

Try a move

Try another move...

If we get stuck, backtrack

Heuristic Search

The main problem is without any knowledge, we
are guessing arbitrarily

Instead, design a heuristic and choose the next
state to try according to heuristic

e.g., # of tiles in the correct location, distance
from maze goal

Probabilistic Inference

Some of these decisions are too hard to compute
exactly, and often there is insufficient information
to make an exact decision

Instead, model uncertainty via probability

An important application for graph theory is using
graphs to represent probabilistic independence

Independent Coins

1. Suppose I flip coin twice, what is the probability
of both flips landing heads?

2. Compare to if we flip a coin, and if it lands
heads, we buy 2 lottery tickets. If tails, we buy 1
lottery ticket. What is the probability we will win
the lottery?

In Scenario 1, we reason with less computation by
taking advantage of independence

A Simple Bayesian
Network

Subway runs

Rain

Cloudy

Construction

Basic Rules of Thumb

Trees and DAGs are easier to reason

We can use similar strategy to Topological sort:

Only do computation once all incoming
neighbors have been computed

Cyclic graphs are difficult; NP-hard in some
settings

Machine Learning
Another related field, Machine Learning, handles
making intelligent decisions after looking at data

e.g., a list of surveyed voters, their demographic
information, answers to questions, location, etc.

We typically think of each of these data points as a
high-dimensional vector

We need smart data structures to allow efficient
spatial reasoning (e.g., finding nearest neighbors)

kd-trees

A kd-tree is a multidimensional binary search tree

a BST that partitions in k-dimensions

Each node specifies a dimension (x, y or z).

Left subtree is less than node in that dimension

Right subtree is greater than node in that
dimension

2d-tree

x-axis

y-
ax

is

A

B

C

A: y

C B

2d-tree

x-axis

y-
ax

is

A

B

C

A: y

C B
D

D

2d-tree

x-axis

y-
ax

is

A

B

C

A: y

C B:x
D

D

3d-tree

From Wikipedia: kd-tree

Benefits of kd-trees

Finding the nearest neighbor of a point is more
efficient

We don’t have to compute the distance between
all other points

Only siblings and some more distant relatives

Reduces cost from O(Nk) to O(log N) if balanced,
but worst case O(N1− 1

k k)

Summary

Three unrelated examples of Data Structures in
A.I. and Machine Learning

Tree logic useful in analyzing games in A.I.

Graph theory useful in probabilistic reasoning

kd-trees allow fast computation for handling
machine learning data

Final Topics Overview

Big-Oh definitions (Omega, little o)

Arraylists/Linked Lists

Stacks/Queues

Binary Search Trees: AVL, Splay

Tries

Heaps

Huffman Coding Trees

Hash Tables: Separate Chaining,
Probing

Graphs: Shortest Path, Max-Flow,
Min Spanning Tree, Euler

Complexity Classes

Disjoint Sets

Sorting: Insertion Sort, Shell Sort,
Merge Sort, Quick Sort, Radix
Sort, Quick Select

