
Data Structures and
Algorithms
Session 25. April 27th, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 5 solutions on courseworks

Homework 6 due before last class: May 4th

Final Review May 4th

Exam Wednesday May 13th 1:10-4:00 PM, 633

Review

Radix Sort specifics

Comparison sorting algorithm characteristics

Algorithms: Selection Sort, Insertion Sort,
Shellsort, Heapsort, Mergesort, Quicksort

Today’s Plan

Finish Quicksort discussion,

worst case, average case

Quickselect

worst case, average case

External Sorting

Quicksort

Choose an element as the pivot

Partition the array into elements greater than pivot
and elements less than pivot

Quicksort each partition

Choosing a Pivot

The worst case for Quicksort is when the partitions
are of size zero and N-1

Ideally, the pivot is the median, so each partition is
about half

If your input is random, you can choose the first
element, but this is very bad for presorted input!

Choosing randomly works, but a better method is...

Median-of-Three

Choose three entries, use the median as pivot

If we choose randomly, 2/N probability of worst
case pivots

Median-of-three gives 0 probability of worst case,
tiny probability of 2nd-worst case. (Approx.)

Randomness less important, so choosing
(first, middle, last) works reasonably well

2/N3

Partitioning the Array

Once pivot is chosen, swap pivot to end of array.
Start counters i=1 and j=N-1

Intuition: i will look at less-than partition, j will look
at greater-than partition

Increment i and decrement j until we find elements
that don't belong (A[i] > pivot or A[j] < pivot)

Swap (A[i], A[j]), continue increment/decrements

When i and j touch, swap pivot with A[j]

Quicksort Worst Case

Running time recurrence includes the cost of
partitioning, then the cost of 2 quicksorts

We don't know the size of the partitions, so let i be
the size of the first partition

T(N) = T(i)+T(N-i-1) + N

Worst case is T(N) = T(N-1) + N

Quicksort Average Case

We'll average over all partition sizes:

NT (N) = 2
N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) = 2
N−2∑

i=0

T (i) + (N − 1)2

T (N) =
2
N

N−1∑

i=1

T (i) + N

Quicksort Average Case
NT (N) = 2

N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) = 2
N−2∑

i=0

T (i) + (N − 1)2

NT (N)− (N − 1)T (N − 1) = 2

[
N−1∑

i=0

T (i)−
N−2∑

i=0

T (i)

]

+N2 − (N − 1)2

Quicksort Average Case
NT (N)− (N − 1)T (N − 1) = 2

[
N−1∑

i=0

T (i)−
N−2∑

i=0

T (i)

]

+N2 − (N − 1)2

NT (N)− (N − 1)T (N − 1) = 2T (N − 1) + 2N − 1

NT (N) = (N + 1)T (N − 1) + 2N

T (N)
N + 1

=
T (N − 1)

N
+

2
N + 1

Quicksort Average Case
T (N)
N + 1

=
T (N − 1)

N
+

2
N + 1

T (N − 2)
N − 1

=
T (N − 3)

N − 2
+

2
N − 1

T (2)
3

=
T (1)

2
+

2
3

T (N)
N + 1

=
T (1)

2
+ 2

N+1∑

i=3

1
i

T (N)
N + 1

= O(log N)

T (N) = O(N log N)T (N − 1)
N

=
T (N − 2)

N − 1
+

2
N

Quicksort Properties

Unstable

Average time O(N log N)

Worst case time

Space O(log N)/ because we need to store
the pivots

O(N2)

O(N2)

Sorting Algorithm
Summary

Worst Case
Time

Average
Time

Space Stable?

Selection

Insertion

Shell

Heap

Merge

Quick

No

Yes

? No

No

Yes/No

No

O(N2) O(N2)

O(N2) O(N2)

O(N2)

O(1)

O(1)

O(1)

O(N)/O(1)

O(N log N)

O(N3/2) O(1)

O(log N)

O(N log N)

O(N log N) O(N log N)

O(N log N)

Selection

Recall selection problem: best solution so far was
Heapselect

Running time: O(N+k log N)

We should expect a faster algorithm since
selection should be easier than sorting

Quickselect

Choose a pivot, partition array, recurse on the
partition that contains k’th element

e.g., select 3rd element

81 91 13 16 97 96 49 80 14 42

42 14 13 16 80 49 81 97 91 96

16 14 13 42 80 49 81 97 91 96

13 14 16 42 80 49 81 97 91 96

Quickselect Worst Case

Quickselect only recurses one one of the
subproblems

However, in the worst case, pivot only eliminates
one element:

T(N) = T(N-1) + N

Same as Quicksort worst case

Quickselect Average
Case
Assume pivot is randomly selected; equal
probability for each subproblem size

T (N) =
1
N

N−1∑

i=0

T (i) + N

NT (N) =
N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) =
N−2∑

i=0

T (i) + (N − 1)2

NT (N)− (N − 1)T (N − 1) = T (N − 1) + N2 − (N − 1)2

Quickselect Average
Case

NT (N)− (N − 1)T (N − 1) = T (N − 1) + N2 − (N − 1)2

NT (N)−NT (N − 1) + T (N − 1) = T (N − 1) + . . .

NT (N) = NT (N − 1) + N2 − (N − 1)2

NT (N) = NT (N − 1) + 2N − 1

T (N) ≤ T (N − 1) + 2

T (N) = O(N)

External Sorting
So far, we have looked at sorting algorithms when
the data is all available in RAM

Often, the data we want to sort is so large, we can
only fit a subset in RAM at any time

We could run standard sorting algorithms, but then
we would be swapping elements to and from disk

Instead, we want to minimize disk I/O, even if it
means more CPU work

MergeSort

We can speed up external sorting if we have two
or more disks (with free space) via Mergesort

One nice feature of Mergesort is the merging step
can be done online with streaming data

Read as much data as you can, sort, write to disk,
repeat for all data, write output to alternating disks

merge outputs using 4 disks

Simplified Running Time
Analysis
Suppose random disk i/o cost 10,000 ns

Sequential disk i/o cost 100 ns

RAM swaps/comparisons cost 10 ns

Naive sorting: 10000 N log N

Assume M elements fit in RAM.
External mergesort:
10 N log M + 100 N (# of sweeps through data)

Counting Merges

After initial sorting, N/M sorted subsets distributed
between 2 disks

After each run, each pair is merged into a sorted
subset twice as large.

Full data set is sorted after log(N/M) runs

External sorting:
10 N log M + 100 N log (N/M)

Next Class

Data structures for Machine Learning/Artificial
Intelligence

Not on exam

Start review

Reading

http://www.sorting-algorithms.com/

Weiss Chapter 7

