Data Structures and Algorithms

Session 25. April 27th, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

- # Homework 5 solutions on courseworks
- # Homework 6 due before last class: May 4th
- * Final Review May 4th
- * Exam Wednesday May 13th 1:10-4:00 PM, 633

Review

- * Radix Sort specifics
- * Comparison sorting algorithm characteristics
- * Algorithms: Selection Sort, Insertion Sort, Shellsort, Heapsort, Mergesort, Quicksort

Today's Plan

* Finish Quicksort discussion,

* worst case, average case

Quickselect

* worst case, average case

* External Sorting

Quicksort

* Choose an element as the **pivot**

* Partition the array into elements greater than pivot and elements less than pivot

* Quicksort each partition

 _
,
-
_

Choosing a Pivot

- * The worst case for Quicksort is when the partitions are of size zero and N-1
- Ideally, the pivot is the median, so each partition is about half
- If your input is random, you can choose the first element, but this is very bad for presorted input!
- * Choosing randomly works, but a better method is...

Median-of-Three

- * Choose three entries, use the median as pivot
- If we choose randomly, 2/N probability of worst case pivots
- * Median-of-three gives **0** probability of worst case, tiny probability of 2nd-worst case. (Approx. $2/N^3$)
- * Randomness less important, so choosing (first, middle, last) works reasonably well

- * Once pivot is chosen, swap pivot to end of array. Start counters i=1 and j=N-1
- Intuition: i will look at less-than partition, j will look at greater-than partition
- Increment i and decrement j until we find elements that don't belong (A[i] > pivot or A[j] < pivot)</p>
- Swap (A[i], A[j]), continue increment/decrements
- When i and j touch, swap pivot with A[j]

Quicksort Worst Case

- Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
- We don't know the size of the partitions, so let i be the size of the first partition

* T(N) = T(i)+T(N-i-1) + N

Worst case is T(N) = T(N-1) + N

Quicksort Average Case

* We'll average over all partition sizes:

$$T(N) = \frac{2}{N} \sum_{\substack{i=1\\N-1}}^{N-1} T(i) + N$$
$$NT(N) = 2 \sum_{\substack{i=0\\i=0}}^{N-1} T(i) + N^2$$
$$(N-1)T(N-1) = 2 \sum_{\substack{i=0\\i=0}}^{N-2} T(i) + (N-1)^2$$

Quicksort Average Case

 $N\!-\!1$

$$NT(N) = 2 \sum_{i=0}^{N} T(i) + N^2$$
$$(N-1)T(N-1) = 2 \sum_{i=0}^{N-2} T(i) + (N-1)^2$$

$$NT(N) - (N-1)T(N-1) = 2\left[\sum_{i=0}^{N-1} T(i) - \sum_{i=0}^{N-2} T(i)\right] + N^2 - (N-1)^2$$

$$\begin{aligned} & \text{Quicksort Average Case} \\ & NT(N) - (N-1)T(N-1) = 2 \left[\sum_{i=0}^{N-1} T(i) - \sum_{i=0}^{N-2} T(i) \right] \\ & + N^2 - (N-1)^2 \\ & NT(N) - (N-1)T(N-1) = 2T(N-1) + 2N - 1 \\ & NT(N) = (N+1)T(N-1) + 2N \\ & \frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2}{N+1} \end{aligned}$$

$$\begin{array}{l} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \underset{N+1}{T(N)} = \frac{T(N-1)}{N} + \frac{2}{N+1} & \begin{array}{l} \displaystyle \frac{T(N)}{N+1} = O(\log N) \\ \displaystyle \frac{T(N-1)}{N} = \frac{T(N-2)}{N-1} + \frac{2}{N} & T(N) = O(N\log N) \\ \displaystyle \begin{array}{l} \displaystyle \frac{T(N-2)}{N-1} = \frac{T(N-3)}{N-2} + \frac{2}{N-1} \\ \displaystyle \frac{T(2)}{3} = \frac{T(1)}{2} + \frac{2}{3} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \frac{T(N)}{N+1} = \frac{T(1)}{2} + 2\sum_{i=3}^{N+1} \frac{1}{i} \end{array} \end{array}$$

Quicksort Properties

Unstable

- * Average time O(N log N)
- ***** Worst case time $O(N^2)$
- * Space O(log N)/ $O(N^2)$ because we need to store the pivots

Sorting Algorithm Summary

	Worst Case Time	Average Time	Space	Stable?	
Selection	$O(N^2)$	$O(N^2)$	O(1)	No	
Insertion	$O(N^2)$	$O(N^2)$	O(1)	Yes	
Shell	$O(N^{3/2})$?	O(1)	No	
Неар	$O(N \log N)$	$O(N \log N)$	O(1)	No	
Merge	$O(N \log N)$	$O(N \log N)$	O(N)/O(1)	Yes/No	
Quick	$O(N^2)$	$O(N \log N)$	$O(\log N)$	No	

Selection

- Recall selection problem: best solution so far was Heapselect
 - % Running time: O(N+k log N)
- We should expect a faster algorithm since selection should be easier than sorting

Quickselect

* Choose a pivot, partition array, recurse on the partition that contains k'th element

* e.g., select 3rd element

81	91	13	16	97	96	49	80	14	42
42	14	13	16	80	49	81	97	91	96
16	14	13	42	80	49	81	97	91	96
13	14	16	42	80	49	81	97	91	96

Quickselect Worst Case

- * Quickselect only recurses one one of the subproblems
- * However, in the worst case, pivot only eliminates one element:

★ T(N) = T(N-1) + N

Same as Quicksort worst case

Quickselect Average Case

* Assume pivot is randomly selected; equal probability for each subproblem size

$$T(N) = \frac{1}{N} \sum_{i=0}^{N-1} T(i) + N$$
$$NT(N) = \sum_{i=0}^{N-1} T(i) + N^2$$
$$(N-1)T(N-1) = \sum_{i=0}^{N-2} T(i) + (N-1)^2$$
$$NT(N) - (N-1)T(N-1) = T(N-1) + N^2 - (N-1)^2$$

Quickselect Average Case

 $NT(N) - (N-1)T(N-1) = T(N-1) + N^2 - (N-1)^2$ $NT(N) - NT(N-1) + T(N-1) = T(N-1) + \dots$ $NT(N) = NT(N-1) + N^2 - (N-1)^2$ NT(N) = NT(N-1) + 2N - 1 $T(N) \le T(N-1) + 2$ T(N) = O(N)

External Sorting

- So far, we have looked at sorting algorithms when the data is all available in RAM
- * Often, the data we want to sort is so large, we can only fit a subset in RAM at any time
- We could run standard sorting algorithms, but then we would be swapping elements to and from disk
 - Instead, we want to minimize disk I/O, even if it means more CPU work

MergeSort

We can speed up external sorting if we have two or more disks (with free space) via Mergesort

- * One nice feature of Mergesort is the merging step can be done online with streaming data
- * Read as much data as you can, sort, write to disk, repeat for all data, write output to alternating disks

* merge outputs using 4 disks

Simplified Running Time Analysis

Suppose random disk i/o cost 10,000 ns

- Sequential disk i/o cost 100 ns
- * RAM swaps/comparisons cost 10 ns
- * Naive sorting: 10000 N log N
- Assume M elements fit in RAM.
 External mergesort:
 10 N log M + 100 N (# of sweeps through data)

Counting Merges

- * After initial sorting, N/M sorted subsets distributed between 2 disks
- * After each run, each pair is merged into a sorted subset twice as large.
 - * Full data set is sorted after log(N/M) runs
- * External sorting: 10 N log M + 100 N log (N/M)

Next Class

* Data structures for Machine Learning/Artificial Intelligence

* Not on exam

Start review

Reading

<u>http://www.sorting-algorithms.com/</u>

Weiss Chapter 7