Data Structures and
Algorithms

Session 25. April 27, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 5 solutions on courseworks

* Homework 6 due before last class: May 4th

* Final Review May 4th

* Exam Wednesday May 13th 1:10-4:00 PM, 633

Review

* Radix Sort specifics
* Comparison sorting algorithm characteristics

* Algorithms: Selection Sort, Insertion Sort,
Shellsort, Heapsort, Mergesort, Quicksort

loday’s Plan

* Finish Quicksort discussion,
* worst case, average case
* Quickselect
* worst case, average case

* External Sorting

Quicksort

* Choose an element as the pivot

* Partition the array into elements greater than pivot
and elements less than pivot

* Quicksort each partition

Choosing a Pivot

* The worst case for Quicksort is when the partitions
are of size zero and N-1

* ldeally, the pivot is the median, so each partition is
about half

* If your input is random, you can choose the first
element, but this is very bad for presorted input!

* Choosing randomly works, but a better method is...

Median-of-Three

* Choose three entries, use the median as pivot

* If we choose randomly, 2/N probability of worst
case pivots

* Median-of-three gives 0 probability of worst case,
tiny probability of 2nd-worst case. (Approx. 2/N?)

* Randomness less important, so choosing
(first, middle, last) works reasonably well

Partitioning the Array

w

* Once pivot is chosen, swap pivot to end of array.
Start counters i=1 and j=N-1

* Intuition: i will look at less-than partition, j will look
at greater-than partition

* Increment 1 and decrement j until we find elements
that don't belong (A[i] > pivot or A[j] < pivot

N

* Swap (A[i], A[j]), continue increment/decrements

* When i and j touch, swap pivot with A[j]

Quicksort Worst Case

* Running time recurrence includes the cost of
partitioning, then the cost of 2 quicksorts

* We don't know the size of the partitions, so let i be
the size of the first partition

* T(N) = T(i))+T(N-i-1) + N
* Worst case is T(N) = T(N-1) + N

Quicksort Average Case

* We'll average over all partition sizes:

Quicksort Average Case

NT(N) =2 i T(i) + N?

Quicksort Average Case

NT(N)— (N - 1T(N -1) = 2 Z_ T(i) — Z_ T(3)

+J_\f2 — (N —1)?
NT(N)— (N—-1DT(N—-1) = 2T(N—1)+2N —1
NT(N)= (N +1)T(N —1)+2N

T(N) T(N-1) 2

Quicksort Average Case

) -1y, 2 I a0y
N+1 N T Ng1 N+ o5)
rN-1) T(N-2) 2 T(N) = O(N log N)
N N—-1 ' N

T(N-2) T(N-—3) 2

N “TN-2 "TN-1

Quicksort Properties

* Unstable
% Average time O(N log N)
* Worst case time O(N?)

% Space O(log N)/O(N?) because we need to store
the pivots

Sorting Algorithm

Summary

Wo[rsi’;niase A\.ﬁrfge Space Stable?

Selection O(N?) O(N?) O(1) No

Insertion O(N?) O(N?) O(1) Yes

Shell O(N3/?) ? O(1) No

Heap |O(NlogN)|O(NlogN) O(1) No
Merge |O(NlogN)|O(NlogN)|O(N)/O(1)| Yes/No

Quick O(N?) |O(NlogN)|l O(logN) No

Selection

* Recall selection problem: best solution so far was
Heapselect

* Running time: O(N+k log N)

* We should expect a faster algorithm since
selection should be easier than sorting

Quickselect

* Choose a pivot, partition array, recurse on the
partition that contains k’th element

% e.g., select 3 element

o1 | 13 | 16 | 97 | 96 | 49 | 80 | 14 | 42
42 | 14 | 13 | 16 | 80 | 49 97 | 91 | 96
16 | 14 | 13 80 | 49 | 81 | 97 | 91 | 96
13 | 14 42 | 80 | 49 | 81 | 97 | 91 | 96

Quickselect Worst Case

* Quickselect only recurses one one of the
subproblems

* However, in the worst case, pivot only eliminates
one element:

% T(N) = T(N-1) + N

% Same as Quicksort worst case

Quickselect Average
Case

* Assume pivot is randomly selected; equal
probability for each subproblem size

T(N) :% S T6) + N
NT(N) = i T(i) + N?
(N —-1)T(N —1) = - T(i) + (N —1)*

Quickselect Average
Case
NT(N)—(N-1T(N -1)=T(N —1)+ N? — (N — 1)

NT(N) = NT(N — 1)+ T(N —=1) = T(N — 1) + ...

External Sorting

* So far, we have looked at sorting algorithms when
the data is all available in RAM

* Often, the data we want to sort is so large, we can
only fit a subset in RAM at any time

* We could run standard sorting algorithms, but then
we would be swapping elements to and from disk

* |Instead, we want to minimize disk I/O, even if it
means more CPU work

MergeSort

* We can speed up external sorting if we have two
or more disks (with free space) via Mergesort

* One nice feature of Mergesort is the merging step
can be done online with streaming data

* Read as much data as you can, sort, write to disk,
repeat for all data, write output to alternating disks

* merge outputs using 4 disks

Simplified Running Time
Analysis

* Suppose random disk i/o cost 10,000 ns
* Sequential disk i/o cost 100 ns
* RAM swaps/comparisons cost 10 ns
* Naive sorting: 10000 N log N

* Assume M elements fit in RAM.
External mergesort:
10 N log M + 100 N (# of sweeps through data)

Counting Merges

* After initial sorting, N/M sorted subsets distributed
between 2 disks

* After each run, each pair is merged into a sorted
subset twice as large.

* Full data set is sorted after log(N/M) runs

* External sorting:
10 N log M + 100 N log (N/M)

Next Class

% Data structures for Machine Learning/Artificial
Intelligence

* Not on exam

¥ Start review

Reading

* http://www.sorting-algorithms.com/

* Weiss Chapter 7

