Data Structures and Algorithms

Session 24. Earth Day, 2009 Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

** Homework 6 due before last class: May 4th

* Final Review May 4th
* Exam Wednesday May 13th 1:10-4:00 PM, 633

粦 cumulative, closed-book/notes

Review

* $\mathrm{O}\left(\mathrm{M} \log ^{*} \mathrm{~N}\right)$ running time for M unions/finds
* Counted cost of each find by two kinds of "pennies": American/Canadian
** Basic intuition: Canadian when node is in middle of rank group, American when node is between groups

米 Comparison Sort lower bound vs. Radix Sort

Today's Plan

* Radix Sort specifics

类 Comparison sorting algorithm characteristics
** Algorithms: Selection Sort, Insertion Sort, Shellsort, Heapsort, Mergesort, Quicksort

Radix Sort with Least Significant Digit

* CountingSort according to the least significant digit

米 Repeat: CountingSort according to the next least significant digit

米 Each step must be stable

* Running time: $\mathbf{O}(\mathbf{N k})$ for maximum of \mathbf{k} digits
** Space: $\mathbf{O}(\mathbf{N}+\mathbf{b})$ for base-b number system*

Radix Sort Example

815
906
127
913
98
632
278

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Radix Sort Example

Radix Sort Example

632
913
815
906
127
98
278

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Radix Sort Example

Radix Sort Example

906
913
815
127
632
278
98

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Radix Sort Example

		0	98
		1	127
913	-	2	278
815	-	3	
	,	4	
127	x	5	
632	H	6	632
278	1	7	
	-	8	815
98		9	906, 913

Analysis

** For maximum of \mathbf{k} digits (in whatever base), we need \mathbf{k} passes through the array, $\mathbf{O}(\mathbf{N k})$

* For base-b number system, we need b queues, which will end up containing \mathbf{N} elements total, so $\mathrm{O}(\mathbf{N}+\mathbf{b})$ space

粦 Stable because if elements are the same, they keep being enqueued and dequeued in the same order

Comparison Sorts

** Of course, Radix Sort only works well for sorting keys representable as digital numbers

粦 In general, we must often use comparison sorts

* We have proven an $\Omega(N \log N)$ lower bound for running time
** But algorithms also have other desirable characteristics

Sorting Algorithm Characteristics

＊Worst case running time
粦 Worst case space usage（can it run in place？）
类 Stability
＊Average running time／space
类（simplicity）

Selection Sort

米 Swap least unsorted element with first unsorted element

* Unstable
* Running time $O\left(N^{2}\right)$
* In place O(1) space
* Algorithm Animation

Insertion Sort

类 Assume first \mathbf{p} elements are sorted. Insert ($\mathbf{p}+\mathbf{1}$)'th element into appropriate location.
** Save $\mathbf{A}[\mathbf{p}+1]$ in temporary variable \mathbf{t}, shift sorted elements greater than \mathbf{t}, and insert \mathbf{t}

* Stable
* Running time $O\left(N^{2}\right)$
* In place $\mathbf{O}(1)$ space

Insertion Sort Analysis

** When the sorted segment is \mathbf{i} elements, we may need up to i shifts to insert the next element

$$
\sum_{i=2}^{N} i=N(N-1) / 2-1=O\left(N^{2}\right)
$$

* Stable because elements are visited in order and equal elements are inserted after its equals
* Algorithm Animation

Shellsort

米 Essentially splits the array into subarrays and runs Insertion Sort on the subarrays
** Uses an increasing sequence, h_{1}, \ldots, h_{t}, such that $h_{1}=1$.

* At phase \mathbf{k}, all elements h_{k} apart are sorted; the array is called h_{k}-sorted
** for every $\mathbf{i}, A[i] \leq A\left[i+h_{k}\right]$

Shell Sort Correctness

** Efficiency of algorithm depends on that elements sorted at earlier stages remain sorted in later stages

* Unstable. Example: 2-sort the following: [5 5 1]

Increment Sequences

* Shell suggested the sequence $h_{t}=\lfloor N / 2\rfloor$ and $h_{k}=\left\lfloor h_{k+1} / 2\right\rfloor$, which was suboptimal
** A better sequence is $h_{k}=2^{k}-1$
** Shellsort using better sequence is proven $\Theta\left(N^{3 / 2}\right)$
** Often used for its simplicity and sub-quadratic time, even though $\mathbf{O}(\mathbf{N} \log \mathbf{N})$ algorithms exist
* Animation

Heapsort

* Build a max heap from the array: $\mathbf{O}(\mathbf{N})$

米 call deleteMax \mathbf{N} times: $\mathbf{O}(\mathbf{N} \log \mathbf{N})$

* \mathbf{O} (1) space
* Simple if we abstract heaps
* Unstable
* Animation

Mergesort

* Quintessential divide-and-conquer example

米 Mergesort each half of the array, merge the results
** Merge by iterating through both halves, compare the current elements, copy lesser of the two into output array

* Animation

Mergesort Recurrence

** Merge operation is costs $\mathbf{O}(\mathbf{N})$
类 $\mathbf{T}(\mathbf{N})=\mathbf{2} \mathbf{T}(\mathbf{N} / 2)+\mathbf{N}$

* We solved this recurrence for the recursive solutions to the homework 1 theory problem

$$
\begin{aligned}
& =\sum_{i=0}^{\log N} 2^{i} c \frac{N}{2^{i}} \\
& =\sum_{i=0}^{\log N} c N=c N \log N
\end{aligned}
$$

Quicksort

* Choose an element as the pivot
* Partition the array into elements greater than pivot and elements less than pivot
* Quicksort each partition
* Animation

Choosing a Pivot

* The worst case for Quicksort is when the partitions are of size zero and $\mathbf{N - 1}$

米 Ideally, the pivot is the median, so each partition is about half

* If your input is random, you can choose the first element, but this is very bad for presorted input!
* Choosing randomly works, but a better method is...

Median-of-Three

* Choose three entries, use the median as pivot
** If we choose randomly, $\mathbf{2 / N}$ probability of worst case pivots
* Median-of-three gives $\mathbf{0}$ probability of worst case, tiny probability of 2 nd-worst case. (Approx. $2 / N^{3}$)
* Randomness less important, so choosing (first, middle, last) works reasonably well

Partitioning the Array

** Once pivot is chosen, swap pivot to end of array. Start counters $\mathbf{i}=1$ and $\mathbf{j}=\mathbf{N}-\mathbf{1}$
** Intuition: i will look at less-than partition, \mathbf{j} will look at greater-than partition

米 Increment \mathbf{i} and decrement \mathbf{j} until we find elements that don't belong (A[i] > pivot or A[j] < pivot)

类 Swap (A[i], A[j]), continue increment/decrements

* When \mathbf{i} and \mathbf{j} touch, swap pivot with $\mathbf{A}[\mathbf{j}]$

Quicksort Worst Case

* Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
** We don't know the size of the partitions, so let \mathbf{i} be the size of the first partition
* $\mathbf{T}(\mathbf{N})=\mathbf{T}(\mathbf{i})+\mathbf{T}(\mathrm{N}-\mathrm{i}-1)+\mathbf{N}$
* Worst case is $\mathbf{T}(\mathbf{N})=\mathbf{T}(\mathbf{N}-1)+\mathbf{N}$

Quicksort Average Case

* We'll average over all partition sizes:

$$
\begin{aligned}
T(N) & =\frac{2}{N-1} \sum_{i=0}^{N-1} T(i)+N \\
N T(N) & =2 \sum_{i=0}^{N-1} T(i)+N^{2} \\
(N-1) T(N-1) & =2 \sum_{i=0}^{N-2} T(i)+(N-1)^{2}
\end{aligned}
$$

Quicksort Average Case

$$
\begin{aligned}
& N T(N)=2 \sum_{i=0}^{N-1} T(i)+N^{2} \\
& (N-1) T(N-1)=2 \sum_{i=0} T(i)+(N-1)^{2} \\
& \begin{aligned}
N T(N)-(N-1) T(N-1)= & 2\left[\sum_{i=0}^{N-1} T(i)-\sum_{i=0}^{N-2} T(i)\right] \\
& +N^{2}-(N-1)^{2}
\end{aligned}
\end{aligned}
$$

Quicksort Average Case

$$
\begin{aligned}
N T(N)-(N-1) T(N-1)= & 2\left[\sum_{i=0}^{N-1} T(i)-\sum_{i=0}^{N-2} T(i)\right] \\
& +N^{2}-(N-1)^{2} \\
N T(N)-(N-1) T(N-1)= & 2 T(N-1)+2 N-1 \\
N T(N)= & (N+1) T(N-1)+2 N \\
\frac{T(N)}{N+1}= & \frac{T(N-1)}{N}+\frac{2}{N+1}
\end{aligned}
$$

Quicksort Average Case

$$
\begin{aligned}
\frac{T(N)}{N+1} & =\frac{T(N-1)}{N}+\frac{2}{N+1} \\
\frac{T(N-2)}{N-1} & =\frac{T(N-3)}{N-2}+\frac{2}{N-1} \\
\frac{T(2)}{3} & =\frac{T(1)}{2}+\frac{2}{3} \\
\frac{T(N)}{N+1} & =\frac{T(1)}{2}+2 \sum_{i=3}^{N+1} \frac{1}{i} \\
\frac{T(N)}{N+1} & =O(\log N) \quad T(N)=O(N \log N)
\end{aligned}
$$

Quicksort Properties

** Unstable

* Average time $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

粦 Worst case time $O\left(N^{2}\right)$

* Space $\mathrm{O}(\log \mathrm{N}) / O\left(N^{2}\right)$ because we need to store the pivots

Summary

	Worst Case Time	Average Time	Space	Stable?
Selection	$O\left(N^{2}\right)$	$O\left(N^{2}\right)$	$O(1)$	No
Insertion	$O\left(N^{2}\right)$	$O\left(N^{2}\right)$	$O(1)$	Yes
Shell	$O\left(N^{3 / 2}\right)$	$?$	$O(1)$	No
Heap	$O(N \log N)$	$O(N \log N)$	$O(1)$	No
Merge	$O(N \log N)$	$O(N \log N)$	$O(N) / O(1)$	Yes/No
Quick	$O\left(N^{2}\right)$	$O(N \log N)$	$O(\log N)$	No

Reading

* http://www.sorting-algorithms.com/
* Weiss Chapter 7

