
Data Structures and
Algorithms
Session 24. Earth Day, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 6 due before last class: May 4th

Final Review May 4th

Exam Wednesday May 13th 1:10-4:00 PM, 633

cumulative, closed-book/notes

Review

O(M log* N) running time for M unions/finds

Counted cost of each find by two kinds of
“pennies”: American/Canadian

Basic intuition: Canadian when node is in middle
of rank group, American when node is between
groups

Comparison Sort lower bound vs. Radix Sort

Today’s Plan

Radix Sort specifics

Comparison sorting algorithm characteristics

Algorithms: Selection Sort, Insertion Sort,
Shellsort, Heapsort, Mergesort, Quicksort

Radix Sort with Least
Significant Digit
CountingSort according to the least significant
digit

Repeat: CountingSort according to the next least
significant digit

Each step must be stable

Running time: O(Nk) for maximum of k digits

Space: O(N+b) for base-b number system*

Radix Sort Example

815

906

127

913

98

632

278

0

1

2

3

4

5

6

7

8

9

Radix Sort Example

815

906

127

913

98

632

278

0

1

2

3

4

5

6

7

8

9

632

913

815

906

127

98, 278

Radix Sort Example

632

913

815

906

127

98

278

0

1

2

3

4

5

6

7

8

9

Radix Sort Example

632

913

815

906

127

98

278

0

1

2

3

4

5

6

7

8

9

906

913, 815

127

632

278

98

Radix Sort Example

906

913

815

127

632

278

98

0

1

2

3

4

5

6

7

8

9

Radix Sort Example

906

913

815

127

632

278

98

0

1

2

3

4

5

6

7

8

9

98

127

278

632

815

906, 913

Analysis

For maximum of k digits (in whatever base), we
need k passes through the array, O(Nk)

For base-b number system, we need b queues,
which will end up containing N elements total, so
O(N+b) space

Stable because if elements are the same, they
keep being enqueued and dequeued in the same
order

Comparison Sorts

Of course, Radix Sort only works well for sorting
keys representable as digital numbers

In general, we must often use comparison sorts

We have proven an lower bound for
running time

But algorithms also have other desirable
characteristics

Ω(N log N)

Sorting Algorithm
Characteristics

Worst case running time

Worst case space usage (can it run in place?)

Stability

Average running time/space

(simplicity)

Selection Sort

Swap least unsorted element with first unsorted
element

Unstable

Running time

In place O(1) space

Algorithm Animation

O(N2)

Insertion Sort

Assume first p elements are sorted. Insert (p+1)'th
element into appropriate location.

Save A[p+1] in temporary variable t, shift sorted
elements greater than t, and insert t

Stable

Running time

In place O(1) space

O(N2)

Insertion Sort Analysis

When the sorted segment is i elements, we may
need up to i shifts to insert the next element

Stable because elements are visited in order and
equal elements are inserted after its equals

Algorithm Animation

N∑

i=2

i = N(N − 1)/2− 1 = O(N2)

Shellsort

Essentially splits the array into subarrays and runs
Insertion Sort on the subarrays

Uses an increasing sequence, , such
that .

At phase k, all elements apart are sorted; the
array is called -sorted

for every i,

h1, . . . , ht

h1 = 1

A[i] ≤ A[i + hk]

hk

hk

Shell Sort Correctness

Efficiency of algorithm depends on that elements
sorted at earlier stages remain sorted in later
stages

Unstable. Example: 2-sort the following: [5 5 1]

Increment Sequences

Shell suggested the sequence
and , which was suboptimal

A better sequence is

Shellsort using better sequence is proven

Often used for its simplicity and sub-quadratic
time, even though O(N log N) algorithms exist

Animation

ht = !N/2"
hk = !hk+1/2"

hk = 2k − 1

Θ(N3/2)

Heapsort

Build a max heap from the array: O(N)

call deleteMax N times: O(N log N)

O(1) space

Simple if we abstract heaps

Unstable

Animation

Mergesort

Quintessential divide-and-conquer example

Mergesort each half of the array, merge the results

Merge by iterating through both halves, compare
the current elements, copy lesser of the two into
output array

Animation

Mergesort Recurrence

Merge operation is costs O(N)

T(N) = 2 T(N/2) + N

We solved this recurrence for the recursive
solutions to the homework 1 theory problem

=
log N∑

i=0

2ic
N

2i

=
log N∑

i=0

cN = cN log N

Quicksort

Choose an element as the pivot

Partition the array into elements greater than pivot
and elements less than pivot

Quicksort each partition

Animation

Choosing a Pivot

The worst case for Quicksort is when the partitions
are of size zero and N-1

Ideally, the pivot is the median, so each partition is
about half

If your input is random, you can choose the first
element, but this is very bad for presorted input!

Choosing randomly works, but a better method is...

Median-of-Three

Choose three entries, use the median as pivot

If we choose randomly, 2/N probability of worst
case pivots

Median-of-three gives 0 probability of worst case,
tiny probability of 2nd-worst case. (Approx.)

Randomness less important, so choosing
(first, middle, last) works reasonably well

2/N3

Partitioning the Array

Once pivot is chosen, swap pivot to end of array.
Start counters i=1 and j=N-1

Intuition: i will look at less-than partition, j will look
at greater-than partition

Increment i and decrement j until we find elements
that don't belong (A[i] > pivot or A[j] < pivot)

Swap (A[i], A[j]), continue increment/decrements

When i and j touch, swap pivot with A[j]

Quicksort Worst Case

Running time recurrence includes the cost of
partitioning, then the cost of 2 quicksorts

We don't know the size of the partitions, so let i be
the size of the first partition

T(N) = T(i)+T(N-i-1) + N

Worst case is T(N) = T(N-1) + N

Quicksort Average Case

We'll average over all partition sizes:

T (N) =
2

N − 1

N−1∑

i=0

T (i) + N

NT (N) = 2
N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) = 2
N−2∑

i=0

T (i) + (N − 1)2

Quicksort Average Case
NT (N) = 2

N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) = 2
N−2∑

i=0

T (i) + (N − 1)2

NT (N)− (N − 1)T (N − 1) = 2

[
N−1∑

i=0

T (i)−
N−2∑

i=0

T (i)

]

+N2 − (N − 1)2

Quicksort Average Case
NT (N)− (N − 1)T (N − 1) = 2

[
N−1∑

i=0

T (i)−
N−2∑

i=0

T (i)

]

+N2 − (N − 1)2

NT (N)− (N − 1)T (N − 1) = 2T (N − 1) + 2N − 1

NT (N) = (N + 1)T (N − 1) + 2N

T (N)
N + 1

=
T (N − 1)

N
+

2
N + 1

Quicksort Average Case
T (N)
N + 1

=
T (N − 1)

N
+

2
N + 1

T (N − 2)
N − 1

=
T (N − 3)

N − 2
+

2
N − 1

T (2)
3

=
T (1)

2
+

2
3

T (N)
N + 1

=
T (1)

2
+ 2

N+1∑

i=3

1
i

T (N)
N + 1

= O(log N) T (N) = O(N log N)

Quicksort Properties

Unstable

Average time O(N log N)

Worst case time

Space O(log N)/ because we need to store
the pivots

O(N2)

O(N2)

Summary

Worst Case
Time

Average
Time

Space Stable?

Selection

Insertion

Shell

Heap

Merge

Quick

No

Yes

? No

No

Yes/No

No

O(N2) O(N2)

O(N2) O(N2)

O(N2)

O(1)

O(1)

O(1)

O(N)/O(1)

O(N log N)

O(N3/2) O(1)

O(log N)

O(N log N)

O(N log N) O(N log N)

O(N log N)

Reading

http://www.sorting-algorithms.com/

Weiss Chapter 7

