Data Structures and Algorithms

Session 24. Earth Day, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

- * Homework 6 due before last class: May 4th
- * Final Review May 4th
- * Exam Wednesday May 13th 1:10-4:00 PM, 633
 - * cumulative, closed-book/notes

Review

* O(M log* N) running time for M unions/finds

- Counted cost of each find by two kinds of "pennies": American/Canadian
- Basic intuition: Canadian when node is in middle of rank group, American when node is between groups
- * Comparison Sort lower bound vs. Radix Sort

Today's Plan

- * Radix Sort specifics
- * Comparison sorting algorithm characteristics
- * Algorithms: Selection Sort, Insertion Sort, Shellsort, Heapsort, Mergesort, Quicksort

Radix Sort with Least Significant Digit

- * CountingSort according to the least significant digit
- * Repeat: CountingSort according to the next least significant digit
- * Each step must be **stable**
- * Running time: O(Nk) for maximum of k digits
- Space: O(N+b) for base-b number system*

	_	
815	0	
015	1	
906	2	
127	3	
	4	
913	5	
98	6	
	7	
632	1	
070	8	
218	9	

632
913
815
906
127
98
278

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

906	
913	
815	
127	
632	
278	
98	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Analysis

- * For maximum of k digits (in whatever base), we need k passes through the array, O(Nk)
- * For base-b number system, we need b queues, which will end up containing N elements total, so O(N+b) space
- Stable because if elements are the same, they keep being enqueued and dequeued in the same order

Comparison Sorts

- * Of course, Radix Sort only works well for sorting keys representable as digital numbers
- * In general, we must often use comparison sorts
- * We have proven an $\,\Omega(N\log N)\,$ lower bound for running time
- * But algorithms also have other desirable characteristics

Sorting Algorithm Characteristics

- Worst case running time
- * Worst case space usage (can it run in place?)
- Stability
- * Average running time/space
- * (simplicity)

Selection Sort

- Swap least unsorted element with first unsorted element
- # Unstable
- ***** Running time $O(N^2)$
- In place O(1) space
- * Algorithm Animation

Insertion Sort

* Assume first p elements are sorted. Insert (p+1)'th element into appropriate location.

Save A[p+1] in temporary variable t, shift sorted elements greater than t, and insert t

Stable

- ***** Running time $O(N^2)$
- # In place O(1) space

Insertion Sort Analysis

- * When the sorted segment is i elements, we may need up to i shifts to insert the next element $\sum_{i=2}^{N} i = N(N-1)/2 1 = O(N^2)$
- Stable because elements are visited in order and equal elements are inserted after its equals
- * Algorithm Animation

Shellsort

- * Essentially splits the array into subarrays and runs Insertion Sort on the subarrays
- * Uses an increasing sequence, h_1, \ldots, h_t , such that $h_1 = 1$.
- * At phase **k**, all elements h_k apart are sorted; the array is called h_k -sorted

* for every i, $A[i] \leq A[i+h_k]$

Shell Sort Correctness

* Efficiency of algorithm depends on that elements sorted at earlier stages remain sorted in later stages

* Unstable. Example: 2-sort the following: [5 5 1]

Increment Sequences

- * Shell suggested the sequence $h_t = \lfloor N/2 \rfloor$ and $h_k = \lfloor h_{k+1}/2 \rfloor$, which was suboptimal
- * A better sequence is $h_k = 2^k 1$
- * Shellsort using better sequence is proven $\Theta(N^{3/2})$
- * Often used for its simplicity and sub-quadratic time, even though O(N log N) algorithms exist

* <u>Animation</u>

Heapsort

- Build a max heap from the array: O(N)
- * call deleteMax N times: O(N log N)
- * O(1) space
- Simple if we abstract heaps
- # Unstable
- * Animation

Mergesort

- * Quintessential divide-and-conquer example
- Mergesort each half of the array, merge the results
- Merge by iterating through both halves, compare the current elements, copy lesser of the two into output array

* Animation

Mergesort Recurrence

Merge operation is costs O(N)

★ T(N) = 2 T(N/2) + N

We solved this recurrence for the recursive solutions to the homework 1 theory problem

$$= \sum_{i=0}^{\log N} 2^{i} c \frac{N}{2^{i}}$$
$$= \sum_{i=0}^{\log N} cN = cN \log N$$

Quicksort

- * Choose an element as the **pivot**
- * Partition the array into elements greater than pivot and elements less than pivot
- * Quicksort each partition

* Animation

Choosing a Pivot

- * The worst case for Quicksort is when the partitions are of size zero and N-1
- Ideally, the pivot is the median, so each partition is about half
- If your input is random, you can choose the first element, but this is very bad for presorted input!
- * Choosing randomly works, but a better method is...

Median-of-Three

- * Choose three entries, use the median as pivot
- If we choose randomly, 2/N probability of worst case pivots
- * Median-of-three gives **0** probability of worst case, tiny probability of 2nd-worst case. (Approx. $2/N^3$)
- * Randomness less important, so choosing (first, middle, last) works reasonably well

Partitioning the Array

- * Once pivot is chosen, swap pivot to end of array. Start counters i=1 and j=N-1
- Intuition: i will look at less-than partition, j will look at greater-than partition
- * Increment i and decrement j until we find elements that don't belong (A[i] > pivot or A[j] < pivot)</p>
- Swap (A[i], A[j]), continue increment/decrements
- When i and j touch, swap pivot with A[j]

Quicksort Worst Case

- Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
- We don't know the size of the partitions, so let i be the size of the first partition

T(N) = T(i) + T(N-i-1) + N

* Worst case is T(N) = T(N-1) + N

Quicksort Average Case

* We'll average over all partition sizes:

$$T(N) = \frac{2}{N-1} \sum_{i=0}^{N-1} T(i) + N$$
$$NT(N) = 2 \sum_{i=0}^{N-1} T(i) + N^2$$
$$(N-1)T(N-1) = 2 \sum_{i=0}^{N-2} T(i) + (N-1)^2$$

Quicksort Average Case

$$NT(N) = 2 \sum_{i=0}^{N-1} T(i) + N^2$$

$$(N-1)T(N-1) = 2 \sum_{i=0}^{N-2} T(i) + (N-1)^2$$

$$NT(N) - (N-1)T(N-1) = 2\left[\sum_{i=0}^{N-1} T(i) - \sum_{i=0}^{N-2} T(i)\right] + N^2 - (N-1)^2$$

$$\begin{aligned} & \text{Quicksort Average Case} \\ & NT(N) - (N-1)T(N-1) = 2 \left[\sum_{i=0}^{N-1} T(i) - \sum_{i=0}^{N-2} T(i) \right] \\ & + N^2 - (N-1)^2 \\ & NT(N) - (N-1)T(N-1) = 2T(N-1) + 2N - 1 \\ & NT(N) = (N+1)T(N-1) + 2N \\ & \frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2}{N+1} \end{aligned}$$

Quicksort Average Case

$$\frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2}{N+1}$$
$$\frac{T(N-2)}{N-1} = \frac{T(N-3)}{N-2} + \frac{2}{N-1}$$
$$\frac{T(2)}{3} = \frac{T(1)}{2} + \frac{2}{3}$$

$$\frac{T(N)}{N+1} = \frac{T(1)}{2} + 2\sum_{i=3}^{N+1} \frac{1}{i}$$
$$\frac{T(N)}{N+1} = O(\log N) \qquad T(N) = O(N \log N)$$

Quicksort Properties

Unstable

- * Average time O(N log N)
- ***** Worst case time $O(N^2)$
- * Space O(log N)/ $O(N^2)$ because we need to store the pivots

Summary

	Worst Case Time	Average Time	Space	Stable?
Selection	$O(N^2)$	$O(N^2)$	O(1)	No
Insertion	$O(N^2)$	$O(N^2)$	O(1)	Yes
Shell	$O(N^{3/2})$?	O(1)	No
Неар	$O(N \log N)$	$O(N \log N)$	O(1)	No
Merge	$O(N \log N)$	$O(N \log N)$	O(N)/O(1)	Yes/No
Quick	$O(N^2)$	$O(N \log N)$	$O(\log N)$	No

Reading

<u>http://www.sorting-algorithms.com/</u>

Weiss Chapter 7