Data Structures and Algorithms

Session 23. April 20, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

- * Homework 6 up later today; Last take-home assignment
 - # due before last class: May 4th
- * Final Review May 4th
- * Exam Wednesday May 13th 1:10-4:00 PM, 633
 - * cumulative, closed-book/notes

Review

- Disjoint Set ADT
 - # find(i): return the equivalence class of i'th object
 - * union(i,j): make i's relatives equivalent to j's
 - * stored in trees with parent pointers; implemented with array
 - * Union-by-rank and path compression

Today's Plan

- * Prove O(M log* N) running time for M unions/finds
- Sorting lower bound
- Radix Sort

Worst Case Bound

- * A slightly looser, but easier to prove/understand bound is that any sequence of $M = \Omega(N)$ operations will cost **O(M log* N)** running time
- * log* N is the number of times the logarithm needs to be applied to N until the result is ≤ 1
- * e.g., log*(65536) = 4 because log(log(log(65536)))) = 1

Proof Preliminaries

- * Plan: upper bound the number of nodes per rank, partition ranks into groups
- * Lemma 1: a node of rank **r** must have at least 2^r descendents
- * Proof by induction, same as union-by-height proof
- * Proof is unchanged because rank is exactly height-without-compression

Initial Lemmas

- * Lemma 2: The number of nodes of rank **r** is at most $N/2^r$
- * Proof. A node with rank r is the root of a subtree with at least 2^r nodes. Any other nodes with rank r must root other subtrees.
- * Lemma 3: The ranks of nodes on a path from leaf to root increase monotonically

Rank Groups

- We will use some group function G(r), which returns the group of rank r
- * We refer to the inverse of this function as $F = G^{-1}$
 - * i.e., for group g, F(g) is the maximum rank of group g.

$$*F(g) = \max\{r|G(r) = g\}$$

Rank Groups $G(r) = \log^* r$

	G(r)
r=2	1
r=[3,4]	2
r=[5,16]	3
r=[17,65536]	4

	F(g)
g=1	2
g=2	4
g=3	16
g=4	65536

Operation Accounting

- * union operations cost O(1), so we won't even count them for this analysis
- # find costs O(1) for each vertex along the path
- * We "pay a penny" for each vertex, sometimes we pay an American penny and sometimes Canadian
- * We will use groups to decide when to pay each

American vs. Canadian

- * For vertex v, if v or the parent of v is the root, or if the parent of v is in a different rank group than v, pay one American penny to the bank
- * Otherwise, deposit a Canadian penny into v
- In the end, we will count both totals for our bound
- * Lemma 4: for a **find**(v), # pennies deposited = to the number of nodes along path from v to root

American Pennies

- * Lemma 5: total deposits of American pennies are at most M(G(N)+2)
- * Proof. Each find operation deposits two American pennies: one for the root and one for its child.
 - * Also, one American penny is deposited for each change in group. Along any path, at most G(N) group changes can occur, so each find costs at most G(N)+2

Canadian Pennies I

- * Lemma 6: The number of vertices **V(g)** in rank group **g** is at most $N/2^{F(g-1)}$
- * Proof. Lemma 2 says at most $N/2^r$ nodes of rank **r**

Canadian Pennies II

- * Lemma 7: The maximum number of Canadian pennies deposited in all nodes in rank group **g** is at most $NF(g)/2^{F(g-1)}$
- * Proof. Each vertex in the group can receive at most $F(g) F(g-1) \le F(g)$ Canadian pennies before its parent isn't in the rank group.
- * Lemma 8: # Canadian pennies is at most

$$N\sum_{g=1}^{G(N)} F(g)/2^{F(g-1)}$$

Total Pennies

* Combing Lemmas 5 and 8, the cost of M operations is at most: G(N)

$$M(G(N) + 2) + N \sum_{g=1}^{\infty} F(g)/2^{F(g-1)}$$

- * Choose, log* as G(r) function. The inverse F function is then $2^{F(i-1)}$, which nicely cancels out on the term on the right.
- * Theorem: $M = \Omega(N)$ operations cost O(M log* N)

M(G(N) + 2) + NG(N)

Mazes

- * For HW6, we'll be using the Disjoint Set ADT to build random mazes
- * The method starts with a grid graph, where vertical and horizontal neighbors share edges
- * Then, essentially, you run Kruskal's algorithm randomly (random spanning tree)
- * Refer to hw6 pdf and Weiss Section 8.7 for more

Data Structures

- * At this point, we have covered all the data structures in the course curriculum
- * We can reflect upon how stronger our toolbox is now that we know of these structures
- * And we have a flavor of how to intelligently design our own data structures

Sorting

- # Given array A of size N, reorder A so its elements are in order.
 - * "In order" with respect to a consistent comparison function

The Bad News

- * Sorting algorithms typically compare two elements and branch according to the result of comparison
- * Theorem: An algorithm that branches from the result of pairwise comparisons must use $\Omega(N \log N)$ operations to sort worst-case input
- * Proof. Consider the decision tree

Comparison Sort Decision Tree: N=2

- * Each node in this decision tree represents a state
- Move to child states after any branch
- * Consider the possible orderings at each state

Lower Bound Proof

- * The worst case is the deepest leaf; the height
- * Lemma 7.1: Let **T** be a binary tree of depth **d**. Then **T** has at most 2^d leaves
- * Proof. By induction. Base case: d = 0, one leaf
 - * Otherwise, we have root and left/right subtrees of depth at most **d-1**. Each has at most 2^{d-1} leaves

Lower Bound Proof

- * Lemma 7.1: Let **T** be a binary tree of depth **d**. Then **T** has at most 2^d leaves
- * Lemma 7.2: A binary tree with L leaves must have [height] at least $\lceil \log L \rceil$
- * Theorem proof. There are N! leaves in the binary decision tree for sorting. Therefore, the deepest node is at depth $\log(N!)$

Lower Bound Proof

 $\log(N!)$

- $= \log(N(N-1)(N-1)\dots(2)(1))$
- $= \log N + \log(N 1) + \log(N 2) + \ldots + \log 2 + \log 1$
- $\geq \log N + \log(N-1) + \log(N-2) + \ldots + \log(N/2)$

$$\geq \frac{N}{2} \log \frac{N}{2}$$
$$\geq \frac{N}{2} \log N - \frac{N}{2}$$

 $= \Omega(N \log N)$

Comparison Sort Lower Bound

- * Decision tree analysis provides nice mechanism for lower bound
- * However, the bound only allows pairwise comparisons.
- We've already learned a data structure that beats the bound
 - What is it?

Trie Running Time

- Insert items into trie then preorder traversal
- # Each insert costs O(k), for length of word k
- * N inserts cost O(Nk)
- * Preorder traversal costs O(Nk), because the worst case trie has each word as a leaf of a disjoint path of length k
 - * This is a very degenerate case

Counting Sort

- * Another simple sort for integer inputs
- * 1. Treat integers as array indices (subtract min)
- # 2. Insert items into array indices
- # 3. Read array in order, skipping empty entries
- # 4. Laugh at comparison sort algorithms

Bucket Sort

- * Like Counting Sort, but less wasteful in space
- * Split the input space into **k** buckets
- * Put input items into appropriate buckets
- * Sort the buckets using favorite sorting algorithm

Radix Sort

- Trie method and CountingSort are forms of Radix Sort
- * Radix Sort sorts by looking at one digit at a time
- * We can start with the least significant digit or the most significant digit
 - * least significant digit first provides a **stable** sort
 - * trie's use most significant, so let's look at least...

Radix Sort with Least Significant Digit

* BucketSort according to the least significant digit

- * Repeat: BucketSort contents of each multi-item bucket according to the next least significant digit
- * Running time: O(Nk) for maximum of k digits

Space: O(Nk)

Reading

<u>http://www.sorting-algorithms.com/</u>

Weiss Chapter 7