
Data Structures and
Algorithms
Session 23. April 20, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 6 up later today;
Last take-home assignment

due before last class: May 4th

Final Review May 4th

Exam Wednesday May 13th 1:10-4:00 PM, 633

cumulative, closed-book/notes

Review

Disjoint Set ADT

find(i): return the equivalence class of i'th object

union(i,j): make i's relatives equivalent to j's

stored in trees with parent pointers;
implemented with array

Union-by-rank and path compression

Today's Plan

Prove O(M log* N) running time for M unions/finds

Sorting lower bound

Radix Sort

Worst Case Bound

A slightly looser, but easier to prove/understand
bound is that any sequence of
operations will cost O(M log* N) running time

log* N is the number of times the logarithm needs
to be applied to N until the result is

e.g., log*(65536) = 4 because
log(log(log(log(65536)))) = 1

M = Ω(N)

≤ 1

Proof Preliminaries

Plan: upper bound the number of nodes per rank,
partition ranks into groups

Lemma 1: a node of rank r must have at least
descendents

Proof by induction, same as union-by-height proof

Proof is unchanged because rank is exactly
height-without-compression

2r

Initial Lemmas

Lemma 2: The number of nodes of rank r is at
most

Proof. A node with rank r is the root of a subtree
with at least nodes. Any other nodes with rank r
must root other subtrees.

Lemma 3: The ranks of nodes on a path from leaf
to root increase monotonically

N/2r

2r

Rank Groups

We will use some group function G(r), which
returns the group of rank r

We refer to the inverse of this function as

i.e., for group g, F(g) is the maximum rank of
group g.

F = G−1

F (g) = max{r|G(r) = g}

Rank Groups
G(r) = log* r

G(r)

r=2

r=[3,4]

r=[5,16]

r=[17,65536]

1

2

3

4

F(g)

g=1

g=2

g=3

g=4

2

4

16

65536

Operation Accounting

union operations cost O(1), so we won’t even
count them for this analysis

find costs O(1) for each vertex along the path

We “pay a penny” for each vertex, sometimes we
pay an American penny and sometimes Canadian

We will use groups to decide when to pay each

American vs. Canadian

For vertex v, if v or the parent of v is the root, or if
the parent of v is in a different rank group than v,
pay one American penny to the bank

Otherwise, deposit a Canadian penny into v

In the end, we will count both totals for our bound

Lemma 4: for a find(v), # pennies deposited = to
the number of nodes along path from v to root

American Pennies

Lemma 5: total deposits of American pennies are
at most M(G(N)+2)

Proof. Each find operation deposits two American
pennies: one for the root and one for its child.

Also, one American penny is deposited for each
change in group. Along any path, at most G(N)
group changes can occur, so each find costs at
most G(N)+2

Canadian Pennies I
Lemma 6: The number of vertices V(g) in rank
group g is at most

Proof. Lemma 2 says at most nodes of rank r

N/2F (g−1)

N/2r

V (g) ≤
F (g)∑

r=F (g−1)+1

N

2r
≤

∞∑

r=F (g−1)+1

N

2r

≤ N
∞∑

r=F (g−1)+1

1
2r
≤ N

2F (g−1)+1

∞∑

s=0

1
2s

≤ N

2F (g−1)

Canadian Pennies II

Lemma 7: The maximum number of Canadian
pennies deposited in all nodes in rank group g is
at most

Proof. Each vertex in the group can receive at
most Canadian pennies
before its parent isn’t in the rank group.

Lemma 8: # Canadian pennies is at most

NF (g)/2F (g−1)

F (g)− F (g − 1) ≤ F (g)

N

G(N)∑

g=1

F (g)/2F (g−1)

Total Pennies

Combing Lemmas 5 and 8, the cost of M
operations is at most:

Choose, log* as G(r) function. The inverse F
function is then , which nicely cancels out
on the term on the right.

Theorem: operations cost O(M log* N)

M(G(N) + 2) + N

G(N)∑

g=1

F (g)/2F (g−1)

2F (i−1)

M(G(N) + 2) + NG(N)

M = Ω(N)

Mazes

For HW6, we'll be using the Disjoint Set ADT to
build random mazes

The method starts with a grid graph, where vertical
and horizontal neighbors share edges

Then, essentially, you run Kruskal's algorithm
randomly (random spanning tree)

Refer to hw6 pdf and Weiss Section 8.7 for more

Data Structures

At this point, we have covered all the data
structures in the course curriculum

We can reflect upon how stronger our toolbox is
now that we know of these structures

And we have a flavor of how to intelligently design
our own data structures

Sorting

Given array A of size N, reorder A so its elements
are in order.

"In order" with respect to a consistent
comparison function

The Bad News

Sorting algorithms typically compare two elements
and branch according to the result of comparison

Theorem: An algorithm that branches from the
result of pairwise comparisons must use
operations to sort worst-case input

Proof. Consider the decision tree

Ω(N log N)

Comparison Sort
Decision Tree: N=2
Each node in this decision tree represents a state

Move to child states after any branch

Consider the possible orderings at each state

a>b
b>a

b>a

a>b

b>a

a>b

b>a>c
b>c>a

b>c

c>b
c>b>a

Decision Tree: N=3

a>b>c
a>c>b
b>a>c
b>c>a
c>a>b
c>b>a

a>b>c
a>c>b
c>a>b

b>a>c
b>c>a
c>b>a

b>a

a>b

a>b>c
a>c>b

a>c

c>a
c>a>b

a>c

c>a

b>a>c

b>c>a

a>b>c

a>c>b

b>c

c>b

Lower Bound Proof

The worst case is the deepest leaf; the height

Lemma 7.1: Let T be a binary tree of depth d.
Then T has at most leaves

Proof. By induction. Base case: d = 0, one leaf

Otherwise, we have root and left/right subtrees
of depth at most d-1. Each has at most
leaves

2d

2d−1

Lower Bound Proof

Lemma 7.1: Let T be a binary tree of depth d.
Then T has at most leaves

Lemma 7.2: A binary tree with L leaves must have
[height] at least

Theorem proof. There are N! leaves in the binary
decision tree for sorting. Therefore, the deepest
node is at depth

2d

!log L"

log(N !)

Lower Bound Proof
log(N !)

= log(N(N − 1)(N − 1) . . . (2)(1))
= log N + log(N − 1) + log(N − 2) + . . . + log 2 + log 1
≥ log N + log(N − 1) + log(N − 2) + . . . + log(N/2)

≥ N

2
log

N

2

≥ N

2
log N − N

2
= Ω(N log N)

Comparison Sort
Lower Bound
Decision tree analysis provides nice mechanism
for lower bound

However, the bound only allows pairwise
comparisons.

We've already learned a data structure that beats
the bound

What is it?

Trie Running Time

Insert items into trie then preorder traversal

Each insert costs O(k), for length of word k

N inserts cost O(Nk)

Preorder traversal costs O(Nk), because the worst
case trie has each word as a leaf of a disjoint path
of length k

This is a very degenerate case

Counting Sort

Another simple sort for integer inputs

1. Treat integers as array indices (subtract min)

2. Insert items into array indices

3. Read array in order, skipping empty entries

4. Laugh at comparison sort algorithms

Bucket Sort

Like Counting Sort, but less wasteful in space

Split the input space into k buckets

Put input items into appropriate buckets

Sort the buckets using favorite sorting algorithm

Radix Sort

Trie method and CountingSort are forms of Radix
Sort

Radix Sort sorts by looking at one digit at a time

We can start with the least significant digit or the
most significant digit

least significant digit first provides a stable sort

trie's use most significant, so let's look at least...

Radix Sort with Least
Significant Digit

BucketSort according to the least significant digit

Repeat: BucketSort contents of each multi-item
bucket according to the next least significant digit

Running time: O(Nk) for maximum of k digits

Space: O(Nk)

Reading

http://www.sorting-algorithms.com/

Weiss Chapter 7

