Data Structures and Algorithms

Session 23. April 20, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 6 up later today;

Last take-home assignment
** due before last class: May 4th

* Final Review May 4th
* Exam Wednesday May 13th 1:10-4:00 PM, 633
* cumulative, closed-book/notes

Review

* Disjoint Set ADT
* find(i): return the equivalence class of i'th object
* union(i,j): make i's relatives equivalent to j 's
* stored in trees with parent pointers; implemented with array
* Union-by-rank and path compression

Today's Plan

* Prove $\mathrm{O}\left(\mathrm{M} \log ^{*} \mathrm{~N}\right)$ running time for M unions/finds
* Sorting lower bound
* Radix Sort

Worst Case Bound

米 A slightly looser, but easier to prove/understand bound is that any sequence of $M=\Omega(N)$ operations will cost $\mathbf{O}\left(\mathbf{M} \log { }^{*} \mathbf{N}\right)$ running time
** log* N is the number of times the logarithm needs to be applied to N until the result is ≤ 1

* e.g., $\log ^{\star}(65536)=4$ because $\log (\log (\log (\log (65536))))=1$

Proof Preliminaries

* Plan: upper bound the number of nodes per rank, partition ranks into groups
* Lemma 1: a node of rank \mathbf{r} must have at least 2^{r} descendents
* Proof by induction, same as union-by-height proof
** Proof is unchanged because rank is exactly height-without-compression

Initial Lemmas

* Lemma 2: The number of nodes of rank \boldsymbol{r} is at most $N / 2^{r}$
** Proof. A node with rank \mathbf{r} is the root of a subtree with at least 2^{r} nodes. Any other nodes with rank \mathbf{r} must root other subtrees.
** Lemma 3: The ranks of nodes on a path from leaf to root increase monotonically

Rank Groups

* We will use some group function $\mathbf{G}(\mathbf{r})$, which returns the group of rank \mathbf{r}
** We refer to the inverse of this function as $F=G^{-1}$
* i.e., for group $\mathbf{g}, \mathbf{F}(\mathbf{g})$ is the maximum rank of group \mathbf{g}.
* $F(g)=\max \{r \mid G(r)=g\}$

Rank Groups $G(r)=\log ^{*} r$

	$G(r)$
$r=2$	1
$r=[3,4]$	2
$r=[5,16]$	3
$r=[17,65536]$	4

	$F(g)$
$g=1$	2
$g=2$	4
$g=3$	16
$g=4$	65536

Operation Accounting

** union operations cost $O(1)$, so we won't even count them for this analysis

* find costs $O(1)$ for each vertex along the path
** We "pay a penny" for each vertex, sometimes we pay an American penny and sometimes Canadian
* We will use groups to decide when to pay each

American vs. Canadian

* For vertex \mathbf{v}, if \mathbf{v} or the parent of \mathbf{v} is the root, or if the parent of \mathbf{v} is in a different rank group than \mathbf{v}, pay one American penny to the bank

类 Otherwise, deposit a Canadian penny into \mathbf{v}
粦 In the end, we will count both totals for our bound

* Lemma 4: for a find(v), \# pennies deposited = to the number of nodes along path from \mathbf{v} to root

American Pennies

** Lemma 5: total deposits of American pennies are at most $\mathrm{M}(\mathrm{G}(\mathrm{N})+2)$

* Proof. Each find operation deposits two American pennies: one for the root and one for its child.

米 Also, one American penny is deposited for each change in group. Along any path, at most $\mathrm{G}(\mathrm{N})$ group changes can occur, so each find costs at most $G(N)+2$

Canadian Pennies I

* Lemma 6: The number of vertices $\mathbf{V}(\mathbf{g})$ in rank group \mathbf{g} is at most $N / 2^{F(g-1)}$
* Proof. Lemma 2 says at most $N / 2^{r}$ nodes of rank \mathbf{r}

$$
\begin{aligned}
V(g) & \leq \sum_{r=F(g-1)+1}^{F(g)} \frac{N}{2^{r}} \leq \sum_{r=F(g-1)+1}^{\infty} \frac{N}{2^{r}} \\
& \leq N \sum_{r=F(g-1)+1}^{\infty} \frac{1}{2^{r}} \leq \frac{N}{2^{F(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}} \\
& \leq \frac{N}{2^{F(g-1)}}
\end{aligned}
$$

Canadian Pennies II

米 Lemma 7: The maximum number of Canadian pennies deposited in all nodes in rank group \mathbf{g} is at most $N F(g) / 2^{F(g-1)}$

* Proof. Each vertex in the group can receive at most $F(g)-F(g-1) \leq F(g)$ Canadian pennies before its parent isn't in the rank group.
** Lemma 8: \# Canadian pennies is at most

$$
N \sum_{g=1}^{G(N)} F(g) / 2^{F(g-1)}
$$

Total Pennies

* Combing Lemmas 5 and 8, the cost of M operations is at most:

$$
M(G(N)+2)+N \sum_{g=1} F(g) / 2^{F(g-1)}
$$

* Choose, log* as $\mathrm{G}(\mathrm{r})$ function. The inverse F function is then $2^{F(i-1)}$, which nicely cancels out on the term on the right.

米 Theorem: $M=\Omega(N)$ operations cost $\mathrm{O}\left(\mathrm{M} \log { }^{*} \mathrm{~N}\right)$

$$
M(G(N)+2)+N G(N)
$$

Mazes

** For HW6, we'll be using the Disjoint Set ADT to build random mazes

米 The method starts with a grid graph, where vertical and horizontal neighbors share edges

米 Then, essentially, you run Kruskal's algorithm randomly (random spanning tree)

* Refer to hw6 pdf and Weiss Section 8.7 for more

Data Structures

* At this point, we have covered all the data structures in the course curriculum

米 We can reflect upon how stronger our toolbox is now that we know of these structures
** And we have a flavor of how to intelligently design our own data structures

Sorting

粦 Given array A of size N , reorder A so its elements are in order.

* "In order" with respect to a consistent comparison function

The Bad News

* Sorting algorithms typically compare two elements and branch according to the result of comparison
** Theorem: An algorithm that branches from the result of pairwise comparisons must use $\Omega(N \log N)$ operations to sort worst-case input
* Proof. Consider the decision tree

Comparison Sort Decision Tree: N=2

** Each node in this decision tree represents a state

* Move to child states after any branch

米 Consider the possible orderings at each state

Decision Tree: N=3

Lower Bound Proof

** The worst case is the deepest leaf; the height
** Lemma 7.1: Let \mathbf{T} be a binary tree of depth \mathbf{d}. Then \mathbf{T} has at most 2^{d} leaves

* Proof. By induction. Base case: $d=0$, one leaf
* Otherwise, we have root and left/right subtrees of depth at most d-1. Each has at most 2^{d-1} leaves

Lower Bound Proof

米 Lemma 7.1: Let \mathbf{T} be a binary tree of depth \mathbf{d}. Then \mathbf{T} has at most 2^{d} leaves

* Lemma 7.2: A binary tree with \mathbf{L} leaves must have [height] at least $\lceil\log L\rceil$
** Theorem proof. There are N! leaves in the binary decision tree for sorting. Therefore, the deepest node is at depth $\log (N!)$

Lower Bound Proof

$\log (N!)$

$$
\begin{aligned}
& =\log (N(N-1)(N-1) \ldots(2)(1)) \\
& =\log N+\log (N-1)+\log (N-2)+\ldots+\log 2+\log 1 \\
& \geq \log N+\log (N-1)+\log (N-2)+\ldots+\log (N / 2) \\
& \geq \frac{N}{2} \log \frac{N}{2} \\
& \geq \frac{N}{2} \log N-\frac{N}{2} \\
& =\Omega(N \log N)
\end{aligned}
$$

Comparison Sort Lower Bound

* Decision tree analysis provides nice mechanism for lower bound
* However, the bound only allows pairwise comparisons.

粦 We've already learned a data structure that beats the bound

* What is it?

Trie Running Time

** Insert items into trie then preorder traversal

* Each insert costs $\mathbf{O}(\mathbf{k})$, for length of word \mathbf{k}
* \mathbf{N} inserts cost $\mathbf{O}(\mathbf{N k})$
** Preorder traversal costs $\mathbf{O}(\mathbf{N k})$, because the worst case trie has each word as a leaf of a disjoint path of length \mathbf{k}
* This is a very degenerate case

Counting Sort

** Another simple sort for integer inputs

* 1. Treat integers as array indices (subtract min)
* 2. Insert items into array indices

米 3. Read array in order, skipping empty entries

* 4. Laugh at comparison sort algorithms

Bucket Sort

* Like Counting Sort, but less wasteful in space
* Split the input space into \mathbf{k} buckets
* Put input items into appropriate buckets
* Sort the buckets using favorite sorting algorithm

Radix Sort

* Trie method and CountingSort are forms of Radix Sort
** Radix Sort sorts by looking at one digit at a time
* We can start with the least significant digit or the most significant digit

米 least significant digit first provides a stable sort

* trie's use most significant, so let's look at least...

Radix Sort with Least Significant Digit

* BucketSort according to the least significant digit

米 Repeat: BucketSort contents of each multi-item bucket according to the next least significant digit

* Running time: $\mathbf{O}(\mathbf{N k})$ for maximum of \mathbf{k} digits
* Space: O(Nk)

Reading

* http://www.sorting-algorithms.com/
* Weiss Chapter 7

