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Announcements

Homework 4 solutions on Courseworks

Homework 5 due Monday

Homework 6 out Monday; final homework

Out of town Wed to Sun; will be online



Review

High Level Introduction to Complexity Classes

P, NP, NP-Complete, NP-hard, Undecidable

Famous NP-Complete problems

Satisfiability, Hamiltionian Path, Graph 
Coloring, Boolean Traveling Salesman



Today’s Plan

Disjoint Set ADT

Definition

Implementation

Analysis



Motivating Example

One interpretation of Kruskal’s Algorithm:

Think of trees as sets of connected nodes

Merge sets by connecting nodes

Never merge nodes that are in the same set

Simple idea, but how can we implement it?



Equivalence Relations

An equivalence relation is a relation operator that 
observes three properties:

Reflexive: (a R a), for all a 

Symmetric: (a R b)  if and only if  (b R a)

Transitive: (a R b) and (b R c) implies (a R c)

Put another way, equivalence relations check if 
operands are in the same equivalence class



Equivalence Classes

Equivalence class: the set of elements that are all 
related to each other via an equivalence relation

Due to transitivity, each member can only be a 
member of one equivalence class

Thus, equivalence classes are disjoint sets

Choose any distinct sets S and T, S ∩ T = ∅



Disjoint Set ADT

Collection of objects, each in an equivalence class

find(x) returns the class of the object

union(x,y) puts x and y in the same class

as well as every other relative of x and y

Even less information than hash; no keys, no 
ordering



Implementation 
Observations
One simple implementation would be to store the 
class label for each element in an array

O(1) lookup for find, O(N) for union

If we store equivalent elements in linked lists, we 
avoid scanning the whole set during union

We can change the labels of the smaller class



Data Structure

Store elements in equivalence (general) trees

Use the tree’s root as equivalence class label

find returns root of containing tree

union merges tree

Since all operations only search up the tree, we 
can store in an array



Implementation
Index all objects from 0 to N-1

Store a parent array such that s[i] is the index of 
i’s parent

If i is a root, store the negative size of its tree*

find follows s[i] until negative, returns index

union(x,y) points the root of x’s tree to the root of 
y’s tree



Analysis

find costs the depth of the node 

union costs O(1) after finding the roots

Both operations depend on the height of the tree

Since these are general trees, the trees can be 
arbitrarily shallow



Union by Size

Claim: if we union by pointing the smaller tree to 
the larger tree’s root, the height is at most log N

Each union increases the depths of nodes in the 
smaller trees

Also puts nodes from the smaller tree into a tree at 
least twice the size

We can only double the size log N times



Union by Size Figure
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Union by Height

Similar method, attach the tree with less height to 
the taller tree

Shorter tree’s nodes join a tree at least twice the 
height, overall height only increases if trees are 
equal height



Union by Height Figure
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Union by Height proof

Induction: tree of height h has at least      nodes

Let T be tree of height h with least nodes possible via 
union operations

At last union, T must have had height h-1, because 
otherwise, it would have been a smaller tree of height h

Since the height was updated, T unioned with another 
tree of height h-1, each had at least           nodes 
resulting in at least       nodes for T

2h

2h−1

2h



Path Compression

Even if we have log N tall trees, we can keep 
calling find on the deepest node repeatedly, 
costing O(M log N) for M operations

Additionally, we will perform path compression 
during each find call

Point every node along the find path to root



Path Compression 
Figure
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Union by Rank
Path compression messes up union-by-height 
because we reduce the height when we compress

We could fix the height, but this turns out to gain 
little, and costs find operations more

Instead, rename to union by rank, where rank is 
just an overestimate of height

Since heights change less often than sizes, 
rank/height is usually the cheaper choice



Worst Case Bound	

The algorithms described have been proven to 
have worst case 
where     is the inverse of Ackermann’s function:

Θ(Mα(M,N))
α

A(1, j) = 2j

A(i, 1) = A(i− 1, 2)
A(i, j) = A(i− 1, A(i, j − 1))

α(M,N) = min{i ≥ 1|A(i, "M/N#) > log N}



Worst Case Bound

A slightly looser, but easier to prove/understand 
bound is that any sequence of 
operations will cost O(M log* N) running time

log* N is the number of times the logarithm needs 
to be applied to N until the result is 

e.g., log*(65536) = 4 because 
log(log(log(log(65536)))) = 1

M = Ω(N)

≤ 1



Log* Plots
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Log* Steps
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Note about Kruskal’s

With this bound, Kruskal’s algorithm needs N-1 
unions, so it should cost almost linear time to 
perform unions

Unfortunately the algorithm is still dominated by 
heap deleteMin calls, so asymptotic running time 
is still O(E log V)



Proof Preliminaries

Plan: upper bound the number of nodes per rank, 
partition ranks into groups

Lemma 1: a node of rank r must have at least      
descendents

Proof by induction, same as union-by-height proof

Proof is unchanged because rank is exactly 
height-without-compression

2r



Initial Lemmas

Lemma 2: The number of nodes of rank r is at 
most

Proof. A node with rank r is the root of a subtree 
with at least      nodes. Any other nodes with rank r 
must root other subtrees.

Lemma 3: The ranks of nodes on a path from leaf 
to root increase monotonically

N/2r

2r



Rank Groups

We will use some group function G(r), which 
returns the group of rank r

We refer to the inverse of this function as

i.e., for group g, F(g) is the maximum rank of 
group g. 

F = G−1

F (g) = max{r|G(r) = g}



Rank Groups
G(r) = log* r
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Operation Accounting

union operations cost O(1), so we won’t even 
count them for this analysis

find costs O(1) for each vertex along the path

We “pay a penny” for each vertex, sometimes we 
pay an American penny and sometimes Canadian

We will use groups to decide when to pay each



American vs. Canadian

For vertex v, if v or the parent of v is the root, or if 
the parent of v is in a different rank group than v, 
pay one American penny to the bank

Otherwise, deposit a Canadian penny into v

In the end, we will count both totals for our bound

Lemma 4: for a find(v), # pennies deposited = to 
the number of nodes along path from v to root



American Pennies

Lemma 5: total deposits of American pennies are 
at most M(G(N)+2)

Proof. Each find operation deposits two American 
pennies: one for the root and one for its child. 

Also, one American penny is deposited for each 
change in group. Along any path, at most G(N) 
group changes can occur, so each find costs at 
most G(N)+2



Canadian Pennies I
Lemma 6: The number of vertices V(g) in rank 
group g is at most

Proof. Lemma 2 says at most          nodes of rank r

N/2F (g−1)

N/2r

V (g) ≤
F (g)∑

r=F (g−1)+1

N

2r
≤

∞∑

r=F (g−1)+1

N

2r

≤ N
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r=F (g−1)+1

1
2r
≤ N

2F (g−1)+1

∞∑

s=0

1
2s

≤ N

2F (g−1)



Canadian Pennies II

Lemma 7: The maximum number of Canadian 
pennies deposited in all nodes in rank group g is 
at most

Proof. Each vertex in the group can receive at 
most                                         Canadian pennies 
before its parent isn’t in the rank group. 

Lemma 8: # Canadian pennies is at most

NF (g)/2F (g−1)

F (g)− F (g − 1) ≤ F (g)

N

G(N)∑

g=1

F (g)/2F (g−1)



Total Pennies

Combing Lemmas 5 and 8, the cost of M 
operations is at most:

Choose, log* as G(r) function. The inverse F 
function is then              , which nicely cancels out 
on the term on the right.

Theorem:                     operations cost O(M log* N)

M(G(N) + 2) + N

G(N)∑

g=1

F (g)/2F (g−1)

2F (i−1)

M(G(N) + 2) + NG(N)

M = Ω(N)



Reading

Weiss Chapter 8


