
Data Structures and
Algorithms
Session 22. April 15, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 4 solutions on Courseworks

Homework 5 due Monday

Homework 6 out Monday; final homework

Out of town Wed to Sun; will be online

Review

High Level Introduction to Complexity Classes

P, NP, NP-Complete, NP-hard, Undecidable

Famous NP-Complete problems

Satisfiability, Hamiltionian Path, Graph
Coloring, Boolean Traveling Salesman

Today’s Plan

Disjoint Set ADT

Definition

Implementation

Analysis

Motivating Example

One interpretation of Kruskal’s Algorithm:

Think of trees as sets of connected nodes

Merge sets by connecting nodes

Never merge nodes that are in the same set

Simple idea, but how can we implement it?

Equivalence Relations

An equivalence relation is a relation operator that
observes three properties:

Reflexive: (a R a), for all a

Symmetric: (a R b) if and only if (b R a)

Transitive: (a R b) and (b R c) implies (a R c)

Put another way, equivalence relations check if
operands are in the same equivalence class

Equivalence Classes

Equivalence class: the set of elements that are all
related to each other via an equivalence relation

Due to transitivity, each member can only be a
member of one equivalence class

Thus, equivalence classes are disjoint sets

Choose any distinct sets S and T, S ∩ T = ∅

Disjoint Set ADT

Collection of objects, each in an equivalence class

find(x) returns the class of the object

union(x,y) puts x and y in the same class

as well as every other relative of x and y

Even less information than hash; no keys, no
ordering

Implementation
Observations
One simple implementation would be to store the
class label for each element in an array

O(1) lookup for find, O(N) for union

If we store equivalent elements in linked lists, we
avoid scanning the whole set during union

We can change the labels of the smaller class

Data Structure

Store elements in equivalence (general) trees

Use the tree’s root as equivalence class label

find returns root of containing tree

union merges tree

Since all operations only search up the tree, we
can store in an array

Implementation
Index all objects from 0 to N-1

Store a parent array such that s[i] is the index of
i’s parent

If i is a root, store the negative size of its tree*

find follows s[i] until negative, returns index

union(x,y) points the root of x’s tree to the root of
y’s tree

Analysis

find costs the depth of the node

union costs O(1) after finding the roots

Both operations depend on the height of the tree

Since these are general trees, the trees can be
arbitrarily shallow

Union by Size

Claim: if we union by pointing the smaller tree to
the larger tree’s root, the height is at most log N

Each union increases the depths of nodes in the
smaller trees

Also puts nodes from the smaller tree into a tree at
least twice the size

We can only double the size log N times

Union by Size Figure

d

3

b

2

e

ca

d

3

b

eca

Union by Height

Similar method, attach the tree with less height to
the taller tree

Shorter tree’s nodes join a tree at least twice the
height, overall height only increases if trees are
equal height

Union by Height Figure

e

1
b

2
f

ca

gd

eb

2
f

ca gd

Union by Height proof

Induction: tree of height h has at least nodes

Let T be tree of height h with least nodes possible via
union operations

At last union, T must have had height h-1, because
otherwise, it would have been a smaller tree of height h

Since the height was updated, T unioned with another
tree of height h-1, each had at least nodes
resulting in at least nodes for T

2h

2h−1

2h

Path Compression

Even if we have log N tall trees, we can keep
calling find on the deepest node repeatedly,
costing O(M log N) for M operations

Additionally, we will perform path compression
during each find call

Point every node along the find path to root

Path Compression
Figure

b

d

ca

3

e

b dc

a

3

e

Union by Rank
Path compression messes up union-by-height
because we reduce the height when we compress

We could fix the height, but this turns out to gain
little, and costs find operations more

Instead, rename to union by rank, where rank is
just an overestimate of height

Since heights change less often than sizes,
rank/height is usually the cheaper choice

Worst Case Bound	

The algorithms described have been proven to
have worst case
where is the inverse of Ackermann’s function:

Θ(Mα(M,N))
α

A(1, j) = 2j

A(i, 1) = A(i− 1, 2)
A(i, j) = A(i− 1, A(i, j − 1))

α(M,N) = min{i ≥ 1|A(i, "M/N#) > log N}

Worst Case Bound

A slightly looser, but easier to prove/understand
bound is that any sequence of
operations will cost O(M log* N) running time

log* N is the number of times the logarithm needs
to be applied to N until the result is

e.g., log*(65536) = 4 because
log(log(log(log(65536)))) = 1

M = Ω(N)

≤ 1

Log* Plots

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

x

lo
g*
(x
)

0 2 4 6 8 10 12
x 1029

0

2

4

6

Log* Steps

log* N = 1

log* N = 2

log* N = 3

log* N = 4

log* N = 5

2

4

16

65536

>> googol

21

22

222

2222

2222
2

Note about Kruskal’s

With this bound, Kruskal’s algorithm needs N-1
unions, so it should cost almost linear time to
perform unions

Unfortunately the algorithm is still dominated by
heap deleteMin calls, so asymptotic running time
is still O(E log V)

Proof Preliminaries

Plan: upper bound the number of nodes per rank,
partition ranks into groups

Lemma 1: a node of rank r must have at least
descendents

Proof by induction, same as union-by-height proof

Proof is unchanged because rank is exactly
height-without-compression

2r

Initial Lemmas

Lemma 2: The number of nodes of rank r is at
most

Proof. A node with rank r is the root of a subtree
with at least nodes. Any other nodes with rank r
must root other subtrees.

Lemma 3: The ranks of nodes on a path from leaf
to root increase monotonically

N/2r

2r

Rank Groups

We will use some group function G(r), which
returns the group of rank r

We refer to the inverse of this function as

i.e., for group g, F(g) is the maximum rank of
group g.

F = G−1

F (g) = max{r|G(r) = g}

Rank Groups
G(r) = log* r

G(r)

r=1

r=2

r=[3,16]

r=[17,65536]

1

2

3

4

F(g)

g=1

g=2

g=3

g=4

1

2

16

65536

Operation Accounting

union operations cost O(1), so we won’t even
count them for this analysis

find costs O(1) for each vertex along the path

We “pay a penny” for each vertex, sometimes we
pay an American penny and sometimes Canadian

We will use groups to decide when to pay each

American vs. Canadian

For vertex v, if v or the parent of v is the root, or if
the parent of v is in a different rank group than v,
pay one American penny to the bank

Otherwise, deposit a Canadian penny into v

In the end, we will count both totals for our bound

Lemma 4: for a find(v), # pennies deposited = to
the number of nodes along path from v to root

American Pennies

Lemma 5: total deposits of American pennies are
at most M(G(N)+2)

Proof. Each find operation deposits two American
pennies: one for the root and one for its child.

Also, one American penny is deposited for each
change in group. Along any path, at most G(N)
group changes can occur, so each find costs at
most G(N)+2

Canadian Pennies I
Lemma 6: The number of vertices V(g) in rank
group g is at most

Proof. Lemma 2 says at most nodes of rank r

N/2F (g−1)

N/2r

V (g) ≤
F (g)∑

r=F (g−1)+1

N

2r
≤

∞∑

r=F (g−1)+1

N

2r

≤ N
∞∑

r=F (g−1)+1

1
2r
≤ N

2F (g−1)+1

∞∑

s=0

1
2s

≤ N

2F (g−1)

Canadian Pennies II

Lemma 7: The maximum number of Canadian
pennies deposited in all nodes in rank group g is
at most

Proof. Each vertex in the group can receive at
most Canadian pennies
before its parent isn’t in the rank group.

Lemma 8: # Canadian pennies is at most

NF (g)/2F (g−1)

F (g)− F (g − 1) ≤ F (g)

N

G(N)∑

g=1

F (g)/2F (g−1)

Total Pennies

Combing Lemmas 5 and 8, the cost of M
operations is at most:

Choose, log* as G(r) function. The inverse F
function is then , which nicely cancels out
on the term on the right.

Theorem: operations cost O(M log* N)

M(G(N) + 2) + N

G(N)∑

g=1

F (g)/2F (g−1)

2F (i−1)

M(G(N) + 2) + NG(N)

M = Ω(N)

Reading

Weiss Chapter 8

