Data Structures and
Algorithms

Session 22. April 15, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 4 solutions on Courseworks
* Homework 5 due Monday
* Homework 6 out Monday; final homework

#* Out of town Wed to Sun: will be online




Review

* High Level Introduction to Complexity Classes
* P, NP, NP-Complete, NP-hard, Undecidable
* Famous NP-Complete problems

* Satisfiability, Hamiltionian Path, Graph
Coloring, Boolean Traveling Salesman




loday’s Plan

* Disjoint Set ADT
* Definition
* Implementation

* Analysis




Motivating Example

* One interpretation of Kruskal’s Algorithm:
* Think of trees as sets of connected nodes
* Merge sets by connecting nodes
* Never merge nodes that are in the same set

* Simple idea, but how can we implement it?




Equivalence Relations

* An equivalence relation is a relation operator that
observes three properties:

* Reflexive: (a R a), for all a
¥ Symmetric: (@R b) ifandonly if (b R a)
* Transitive: (a R b) and (b R ¢) implies (a R ¢)

* Put another way, equivalence relations check if
operands are in the same equivalence class




Equivalence Classes

* Equivalence class: the set of elements that are all
related to each other via an equivalence relation

* Due to transitivity, each member can only be a
member of one equivalence class

* Thus, equivalence classes are disjoint sets

% Choose any distinct sets Sand T, SNT = ()




Disjoint Set ADT

* Collection of objects, each in an equivalence class
* find(x) returns the class of the object
* union(x,y) puts x and y in the same class

% as well as every other relative of x and y

* Even less information than hash; no keys, no
ordering




Implementation
Observations

* One simple implementation would be to store the
class label for each element in an array

* O(1) lookup for find, O(N) for union

* If we store equivalent elements in linked lists, we
avoid scanning the whole set during union

* We can change the labels of the smaller class




Data Structure

* Store elements in equivalence (general) trees
* Use the tree’s root as equivalence class label
* find returns root of containing tree

* union merges tree

* Since all operations only search up the tree, we
can store in an array




Implementation

* Index all objects from 0 to N-1

* Store a parent array such that s[i] is the index of
I's parent

* If i is a root, store the negative size of its tree”
* find follows s[i] until negative, returns index

* union(x,y) points the root of x’s tree to the root of
y’s tree




Analysis

* find costs the depth of the node
* union costs O(1) after finding the roots
* Both operations depend on the height of the tree

* Since these are general trees, the trees can be
arbitrarily shallow




Union by Size

* Claim: if we union by pointing the smaller tree to
the larger tree’s root, the height is at most log N

* Each union increases the depths of nodes in the
smaller trees

* Also puts nodes from the smaller tree into a tree at
least twice the size

* We can only double the size log N times




Union by Size Figure

000 (2




Union by Height

* Similar method, attach the tree with less height to
the taller tree

* Shorter tree’s nodes join a tree at least twice the
height, overall height only increases if trees are
equal height




Union by Height Figure




Union by Height proof

% Induction: tree of height h has at least 2" nodes

* Let T be tree of height h with least nodes possible via
union operations

* At last union, T must have had height h-1, because
otherwise, it would have been a smaller tree of height h

% Since the height was updated, T unioned with another
tree of height h-1, each had at least 2"~! nodes
resulting in at least 2" nodes for T




Path Compression

* Even if we have log N tall trees, we can keep
calling find on the deepest node repeatedly,
costing O(M log N) for M operations

* Additionally, we will perform path compression
during each find call

* Point every node along the find path to root




Path Compression
Flgure

" 6L




Union by Rank

* Path compression messes up union-by-height
because we reduce the height when we compress

* We could fix the height, but this turns out to gain
little, and costs find operations more

* Instead, rename to union by rank, where rank is
just an overestimate of height

* Since heights change less often than sizes,
rank/height is usually the cheaper choice




Worst Case Bound

* The algorithms described have been proven to
have worst case O(Ma(M, N))
where « is the inverse of Ackermann’s function:

¥ A(l,5) = 2
A6, 1) = A@i—1,2)
Alinj) = Ali—1,A(,j—1))

¥ a(M,N)=min{i > 1|A(i, | M/N|) > log N}




Worst Case Bound

* A slightly looser, but easier to prove/understand
bound is that any sequence of M = Q(N)
operations will cost O(M log* N) running time

* log”™ N is the number of times the logarithm needs
to be applied to N until the result is <1

* e.g., 10g*(65536) = 4 because
log(log(log(log(65536)))) = 1




Log™ Plots

NN W A~ O

log*(x)

T T T T T T T T
XXXXIXHIIXHIXKIHKIHKIHIK K KKK KKK KK HKHKHXKHEIXKHKKIXKHX KK KIKIXKIKIK KKK KKK K KKK KKK KK KHXKHXIHXKHXIKX KKK
XXXHXXHXKHXKXKX .
XX —
I I I I I I I I I
10 20 30 40 50 60 70 80 90 100
X
I I I I I I I
0 2 4 6 8 10 12

x 10°°




Log™ Steps

log* N =1 2! 2
log* N = 2 22 4
log* N =3 92° 16
log* N = 4 922" 65536
log* N =5 22222 >> googol




Note about Kruskal’s

* With this bound, Kruskal’s algorithm needs N-1
unions, so it should cost almost linear time to
perform unions

* Unfortunately the algorithm is still dominated by
heap deleteMin calls, so asymptotic running time
is still O(E log V)




Proof Preliminaries

* Plan: upper bound the number of nodes per rank,
partition ranks into groups

¥ Lemma 1: a node of rank r must have at least 2"
descendents

* Proof by induction, same as union-by-height proof

* Proof is unchanged because rank is exactly
height-without-compression




INitial Lemmas

¥ Lemma 2: The number of nodes of rank r is at
most N /2"

% Proof. A node with rank r is the root of a subtree
with at least 2" nodes. Any other nodes with rank r
must root other subtrees.

* Lemma 3: The ranks of nodes on a path from leaf
to root increase monotonically




Rank Groups

* We will use some group function G(r), which
returns the group of rank r

% We refer to the inverse of this functionas F' = G~*

* i.e., for group g, F(g) is the maximum rank of
group g.

* F(g) = max{r|G(r) = g}




Rank Groups
G(r) = log* r

G(r) F(9)
r=1 1 g=1 1
r=2 2 g=2 2
r=[3,16] 3 9=3 16
r=[17,65536] 4 g=4 65536




Operation Accounting

* union operations cost O(1), so we won’t even
count them for this analysis

* find costs O(1) for each vertex along the path

* We “pay a penny” for each vertex, sometimes we
pay an American penny and sometimes Canadian

* We will use groups to decide when to pay each




American vs. Canadian

* For vertex v, if v or the parent of v is the root, or if
the parent of v is in a different rank group than v,
pay one American penny to the bank

* Otherwise, deposit a Canadian penny into v
* |In the end, we will count both totals for our bound

* Lemma 4: for a find(v), # pennies deposited = to
the number of nodes along path from v to root




American Pennies

* Lemma 5: total deposits of American pennies are
at most M(G(N)+2)

* Proof. Each find operation deposits two American
pennies: one for the root and one for its child.

* Also, one American penny is deposited for each
change in group. Along any path, at most G(N)
group changes can occur, so each find costs at
most G(N)+2




Canadian Pennies |

* Lemma 6: The number of vertices V(g) in rank
group g is at most N/279~

% Proof. Lemma 2 says at most N/2" nodes of rank r

F(g)

N = N
Vig) < Z or < Z or
r=F(g—1)+1 r=F(g—1)+1
- 1 N =1
< N ), o7 = QF(g- D11 ) 9s
r=F(g—1)+1 s=0
N
<

2F(g—1)




Canadian Pennies |

¥ Lemma 7: The maximum number of Canadian

pennies deposited in all nodes in rank group g is
at most NF(g)/2(9—1

* Proof. Each vertex in the group can receive at
most F'(g) — F(g — 1) < F(g) Canadian pennies
before its parent isn’t in the rank group.

* Lemma 8: # Canadian pennies is at most
G(N)

N > F(g)/27"Y




Total Pennies

* Combing Lemmas 5 and 8, the cost of M
operations is at most: G(N)

M(G(N)+2)+N Y F(g)/2"™Y
g=1
* Choose, log* as G(r) function. The inverse F
function is then 27(=1)  which nicely cancels out
on the term on the right.

* Theorem: M = Q(N) operations cost O(M log* N)
M(G(N)+2)+ NG(N)




Reading

* Weiss Chapter 8




