Data Structures and Algorithms

Session 22. April 15, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

- # Homework 4 solutions on Courseworks
- # Homework 5 due Monday
- # Homework 6 out Monday; final homework
- * Out of town Wed to Sun; will be online

Review

High Level Introduction to Complexity Classes

- * P, NP, NP-Complete, NP-hard, Undecidable
- * Famous NP-Complete problems
 - Satisfiability, Hamiltionian Path, Graph Coloring, Boolean Traveling Salesman

Today's Plan

- Disjoint Set ADT
- * Definition
- # Implementation
- * Analysis

Motivating Example

* One interpretation of Kruskal's Algorithm:

- * Think of trees as sets of connected nodes
- * Merge sets by connecting nodes
- * Never merge nodes that are in the same set
- Simple idea, but how can we implement it?

Equivalence Relations

- * An equivalence relation is a relation operator that observes three properties:
 - *** Reflexive**: (a R a), for all a
 - **Symmetric**: (a R b) if and only if (b R a)
 - *** Transitive**: (a R b) and (b R c) implies (a R c)
- * Put another way, equivalence relations check if operands are in the same equivalence class

Equivalence Classes

- * Equivalence class: the set of elements that are all related to each other via an equivalence relation
- * Due to transitivity, each member can only be a member of one equivalence class
- * Thus, equivalence classes are **disjoint sets**
 - * Choose any distinct sets S and T, $S \cap T = \emptyset$

Disjoint Set ADT

- * Collection of objects, each in an equivalence class
- # find(x) returns the class of the object
- * union(x,y) puts x and y in the same class
 - * as well as every other relative of x and y
- * Even less information than hash; no keys, no ordering

Implementation Observations

- * One simple implementation would be to store the class label for each element in an array
 - * O(1) lookup for **find**, O(N) for **union**
- If we store equivalent elements in linked lists, we avoid scanning the whole set during union
 - * We can change the labels of the smaller class

Data Structure

- * Store elements in equivalence (general) trees
- # Use the tree's root as equivalence class label
- # find returns root of containing tree
- # union merges tree
- Since all operations only search up the tree, we can store in an array

Implementation

- Index all objects from 0 to N-1
- Store a parent array such that s[i] is the index of i's parent
- * If **i** is a root, store the negative size of its tree*
- # find follows s[i] until negative, returns index
- *** union**(x,y) points the root of x's tree to the root of y's tree

Analysis

- **# find** costs the depth of the node
- # union costs O(1) after finding the roots
- * Both operations depend on the height of the tree
- Since these are general trees, the trees can be arbitrarily shallow

Union by Size

- Claim: if we union by pointing the smaller tree to the larger tree's root, the height is at most log N
- * Each union increases the depths of nodes in the smaller trees
- * Also puts nodes from the smaller tree into a tree at least twice the size
 - * We can only double the size log N times

Union by Height

- Similar method, attach the tree with less height to the taller tree
- Shorter tree's nodes join a tree at least twice the height, overall height only increases if trees are equal height

Union by Height proof

- * Induction: tree of height **h** has at least 2^h nodes
- * Let T be tree of height h with least nodes possible via union operations
- * At last union, T must have had height h-1, because otherwise, it would have been a smaller tree of height h
- * Since the height was updated, **T** unioned with another tree of height **h-1**, each had at least 2^{h-1} nodes resulting in at least 2^h nodes for **T**

Path Compression

- * Even if we have log N tall trees, we can keep calling **find** on the deepest node repeatedly, costing O(M log N) for M operations
- * Additionally, we will perform path compression during each find call
 - * Point every node along the find path to root

Union by Rank

- * Path compression messes up union-by-height because we reduce the height when we compress
- We could fix the height, but this turns out to gain little, and costs find operations more
- Instead, rename to union by rank, where rank is just an overestimate of height
- Since heights change less often than sizes, rank/height is usually the cheaper choice

Worst Case Bound

* The algorithms described have been proven to have worst case $\Theta(M\alpha(M, N))$ where α is the inverse of Ackermann's function:

*
$$A(1,j) = 2^{j}$$

 $A(i,1) = A(i-1,2)$
 $A(i,j) = A(i-1,A(i,j-1))$

 $\ast \alpha(M,N) = \min\{i \ge 1 | A(i, \lfloor M/N \rfloor) > \log N \}$

Worst Case Bound

- * A slightly looser, but easier to prove/understand bound is that any sequence of $M = \Omega(N)$ operations will cost **O(M log* N)** running time
- * log* N is the number of times the logarithm needs to be applied to N until the result is ≤ 1
- * e.g., log*(65536) = 4 because log(log(log(65536)))) = 1

Log* Steps

log* N = 1	2^1	2
log* N = 2	2^2	4
log* N = 3	2^{2^2}	16
log* N = 4	$2^{2^{2^2}}$	65536
log* N = 5	$2^{2^{2^{2^{2}}}}$	>> googol

Note about Kruskal's

- With this bound, Kruskal's algorithm needs N-1 unions, so it should cost almost linear time to perform unions
- * Unfortunately the algorithm is still dominated by heap deleteMin calls, so asymptotic running time is still O(E log V)

Proof Preliminaries

- * Plan: upper bound the number of nodes per rank, partition ranks into groups
- * Lemma 1: a node of rank **r** must have at least 2^r descendents
- * Proof by induction, same as union-by-height proof
- * Proof is unchanged because rank is exactly height-without-compression

Initial Lemmas

- * Lemma 2: The number of nodes of rank **r** is at most $N/2^r$
- * Proof. A node with rank r is the root of a subtree with at least 2^r nodes. Any other nodes with rank r must root other subtrees.
- * Lemma 3: The ranks of nodes on a path from leaf to root increase monotonically

Rank Groups

- We will use some group function G(r), which returns the group of rank r
- * We refer to the inverse of this function as $F = G^{-1}$
 - * i.e., for group g, F(g) is the maximum rank of group g.

$$*F(g) = \max\{r|G(r) = g\}$$

Rank Groups $G(r) = \log^* r$

	G(r)
r=1	1
r=2	2
r=[3,16]	3
r=[17,65536]	4

	F(g)
g=1	1
g=2	2
g=3	16
g=4	65536

Operation Accounting

- * union operations cost O(1), so we won't even count them for this analysis
- # find costs O(1) for each vertex along the path
- * We "pay a penny" for each vertex, sometimes we pay an American penny and sometimes Canadian
- * We will use groups to decide when to pay each

American vs. Canadian

- * For vertex v, if v or the parent of v is the root, or if the parent of v is in a different rank group than v, pay one American penny to the bank
- * Otherwise, deposit a Canadian penny into v
- In the end, we will count both totals for our bound
- * Lemma 4: for a **find**(v), # pennies deposited = to the number of nodes along path from v to root

American Pennies

- * Lemma 5: total deposits of American pennies are at most M(G(N)+2)
- * Proof. Each find operation deposits two American pennies: one for the root and one for its child.
 - * Also, one American penny is deposited for each change in group. Along any path, at most G(N) group changes can occur, so each find costs at most G(N)+2

Canadian Pennies I

- * Lemma 6: The number of vertices **V(g)** in rank group **g** is at most $N/2^{F(g-1)}$
- * Proof. Lemma 2 says at most $N/2^r$ nodes of rank **r**

Canadian Pennies II

- * Lemma 7: The maximum number of Canadian pennies deposited in all nodes in rank group **g** is at most $NF(g)/2^{F(g-1)}$
- * Proof. Each vertex in the group can receive at most $F(g) F(g-1) \le F(g)$ Canadian pennies before its parent isn't in the rank group.
- * Lemma 8: # Canadian pennies is at most

$$N\sum_{g=1}^{G(N)} F(g)/2^{F(g-1)}$$

Total Pennies

* Combing Lemmas 5 and 8, the cost of M operations is at most: G(N)

$$M(G(N) + 2) + N \sum_{g=1}^{\infty} F(g)/2^{F(g-1)}$$

- * Choose, log* as G(r) function. The inverse F function is then $2^{F(i-1)}$, which nicely cancels out on the term on the right.
- * Theorem: $M = \Omega(N)$ operations cost O(M log* N)

M(G(N) + 2) + NG(N)

Reading

* Weiss Chapter 8