
Data Structures and
Algorithms
Session 20. April 8, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 5 is out:

You can use adjacency lists if you prefer

Review

Extensions of Dijkstra’s Algorithm

Critical Path Analysis

All Pairs Shortest Path (Floyd-Warshall)

Maximum Flow

Floyd-Fulkerson Algorithm

Today’s Plan

Minimum Spanning Tree

Prim’s Algorithm

Kruskal’s Algorithm

Depth first search

Euler Paths

Minimum Spanning Tree
Problem definition

Given connected graph G, find the connected,
acyclic subgraph T with minimum edge weight

A tree that includes every node is called a
spanning tree

The method to find the MST is another example of
a greedy algorithm

Motivation for Greed

Consider any spanning tree

Adding another edge to the tree
creates exactly one cycle

Removing an edge from that
cycle restores the tree structure

Prim’s Algorithm

Grow the tree like Dijkstra’s Algorithm

Dijkstra’s: grow the set of vertices to which we
know the shortest path

Prim’s: grow the set of vertices we have added to
the minimum tree

Store shortest edge D[] from each node to tree

Prim’s Algorithm

Start with a single node tree, set distance of
adjacent nodes to edge weights, infinite elsewhere

Repeat until all nodes are in tree:

Add the node v with shortest known distance

Update distances of adjacent nodes w:
D[w] = min(D[w], weight(v,w))

Prim’s Example

3

5

7

4

6

59

Implementation Details
Store “previous node” like Dijkstra’s Algorithm;
backtrack to construct tree after completion

Of course, use a priority queue to keep track of
edge weights. Either

keep track of nodes inside heap & decreaseKey

or just add a new copy of the node when key
decreases, and call deleteMin until you see a
node not in the tree

Prim’s Algorithm
Justification

At any point, we can consider the set of nodes in
the tree T and the set outside the tree Q

Whatever the MST structure of the nodes in Q, at
least one edge must connect the MSTs of T and Q

The greedy edge is just as good structurally as any
other edge, and has minimum weight

Prim’s Running Time

Each stage requires one deleteMin O(log |V|), and
there are exactly |V| stages

We update keys for each edge, updating the key
costs O(log |V|) (either an insert or a decreaseKey)

Total time: O(|V| log |V| + |E| log |V|) = O(|E| log |V|)

Kruskal’s Algorithm
Somewhat simpler conceptually, but more
challenging to implement

Algorithm: repeatedly add the shortest edge that
does not cause a cycle until no such edges exist

Each added edge performs a union on two trees;
perform unions until there is only one tree

Need special ADT for unions
(Disjoint Set... we’ll cover it later)

Kruskal’s Example

3

5

7

4

6

59

Kruskal’s Justification

At each stage, the greedy edge e connects two
nodes v and w

Eventually those two nodes must be connected;

we must add an edge to connect trees including
v and w

We can always use e to connect v and w, which
must have less weight since it's the greedy choice

Kruskal’s Running Time

First, buildHeap costs O(|E|)

Each edge, need to check if it creates a cycle
(costs O(log V))

In the worst case, we have to call |E| deleteMins

Total running time O(|E| log |E|); but |E| ≤| V |2

O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)

MST Wrapup

Connect all nodes in graph using minimum weight
tree

Two greedy algorithms:

Prim’s: similar to Dijkstra’s. Easier to code

Kruskal’s: easy on paper

Depth First Search

Level-order <–> Breadth-first Search
Preorder <–> Depth-first Search

Visit vertex v, then recursively visit v’s neighbors

To avoid visiting nodes more than once in a cyclic
graph, mark visited nodes,

and only recurse on unmarked nodes

The Seven Bridges of
Königsberg

http://math.dartmouth.edu/~euler/docs/originals/E053.pdf

Königsburg Bridge Problem: can one walk across
the seven bridges and never cross the same
bridge twice?

Euler Paths and Circuits

Euler path – a (possibly cyclic) path that crosses
each edge exactly once

Euler circuit - an Euler path that starts and ends on
the same node

Euler’s Proof

Does an Euler path exist? No

Nodes with an odd degree must either be the start
or end of the path

Only one node in the Königsberg graph has odd
degree; the path cannot exist

What about an Euler circuit?

Finding an Euler Circuit

Run a partial DFS; search down a path until you
need to backtrack (mark edges instead of nodes)

At this point, you will have found a circuit

Find first node along the circuit that has unvisited
edges; run a DFS starting with that edge

Splice the new circuit into the main circuit, repeat
until all edges are visited

Euler Circuit Example

2 3

1

5 6

4

7

Euler Circuit Running
Time
All our DFS's will visit each edge once, so at least
O(|E|)

Must use a linked list for efficient splicing of path,
so searching for a vertex with unused edge can be
expensive

but cleverly saving the last scanned edge in each
adjacency list can prevent having to check edges
more than once, so also O(|E|)

Hamiltonian Cycle

Now that we know how to find Euler circuits
efficiently, can we find Hamiltonian Cycles?

Hamiltonian cycle - path that visits each node
once, starts and ends on same node

Reading

Weiss 9.5 (MST - today’s material)

Weiss 9.6 (DFS - today’s material)

Weiss 9.7 (P vs. NP - Monday)

