Data Structures and Algorithms

Session 20. April 8, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 5 is out:

* You can use adjacency lists if you prefer

Review

* Extensions of Dijkstra's Algorithm

- * Critical Path Analysis
- * All Pairs Shortest Path (Floyd-Warshall)
- * Maximum Flow
 - * Floyd-Fulkerson Algorithm

Today's Plan

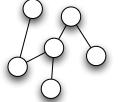
- * Minimum Spanning Tree
 - * Prim's Algorithm
 - * Kruskal's Algorithm
- * Depth first search
 - # Euler Paths

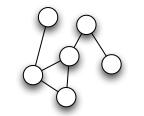
Minimum Spanning Tree Problem definition

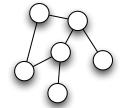
- Given connected graph G, find the connected, acyclic subgraph T with minimum edge weight
 - * A tree that includes every node is called a spanning tree
- * The method to find the MST is another example of a greedy algorithm

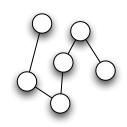
Motivation for Greed

- * Consider any spanning tree
- * Adding another edge to the tree creates exactly one cycle
- Removing an edge from that cycle restores the tree structure







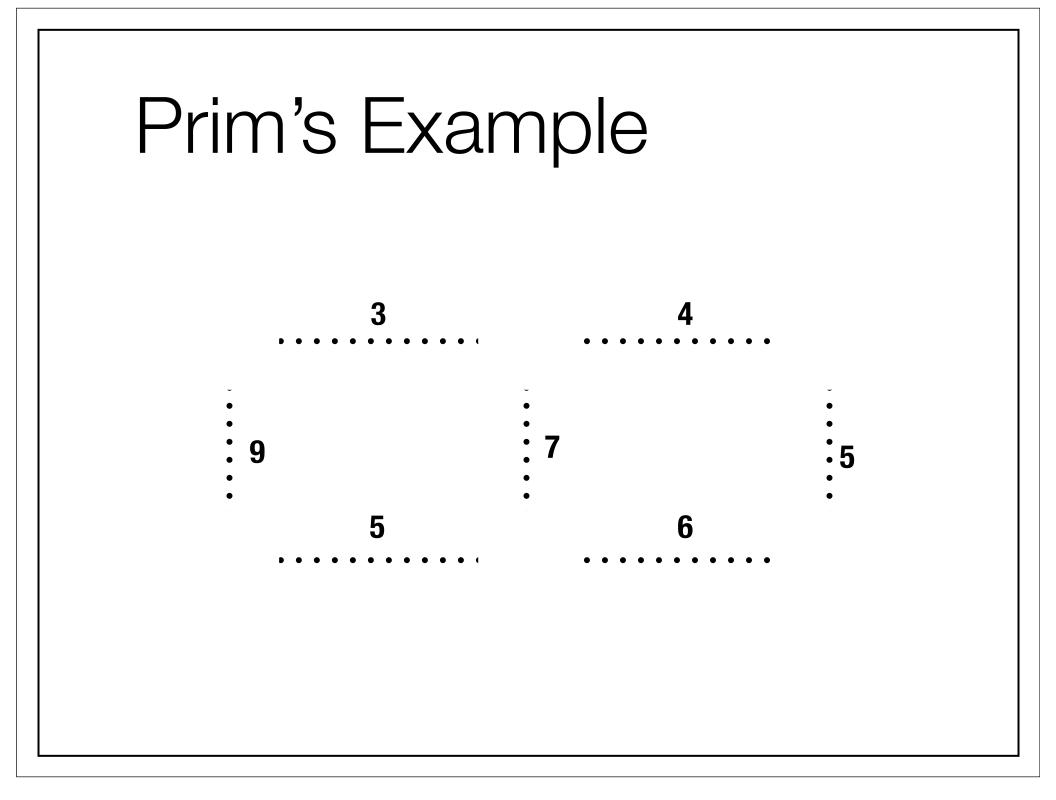


Prim's Algorithm

- # Grow the tree like Dijkstra's Algorithm
- Dijkstra's: grow the set of vertices to which we know the shortest path
- * Prim's: grow the set of vertices we have added to the minimum tree
- Store shortest edge D[] from each node to tree

Prim's Algorithm

- Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere
- Repeat until all nodes are in tree:
 - * Add the node v with shortest known distance
 - # Update distances of adjacent nodes w:
 D[w] = min(D[w], weight(v,w))



Implementation Details

- Store "previous node" like Dijkstra's Algorithm; backtrack to construct tree after completion
- * Of course, use a priority queue to keep track of edge weights. Either
 - * keep track of nodes inside heap & decreaseKey
 - * or just add a new copy of the node when key decreases, and call deleteMin until you see a node not in the tree

Prim's Algorithm Justification

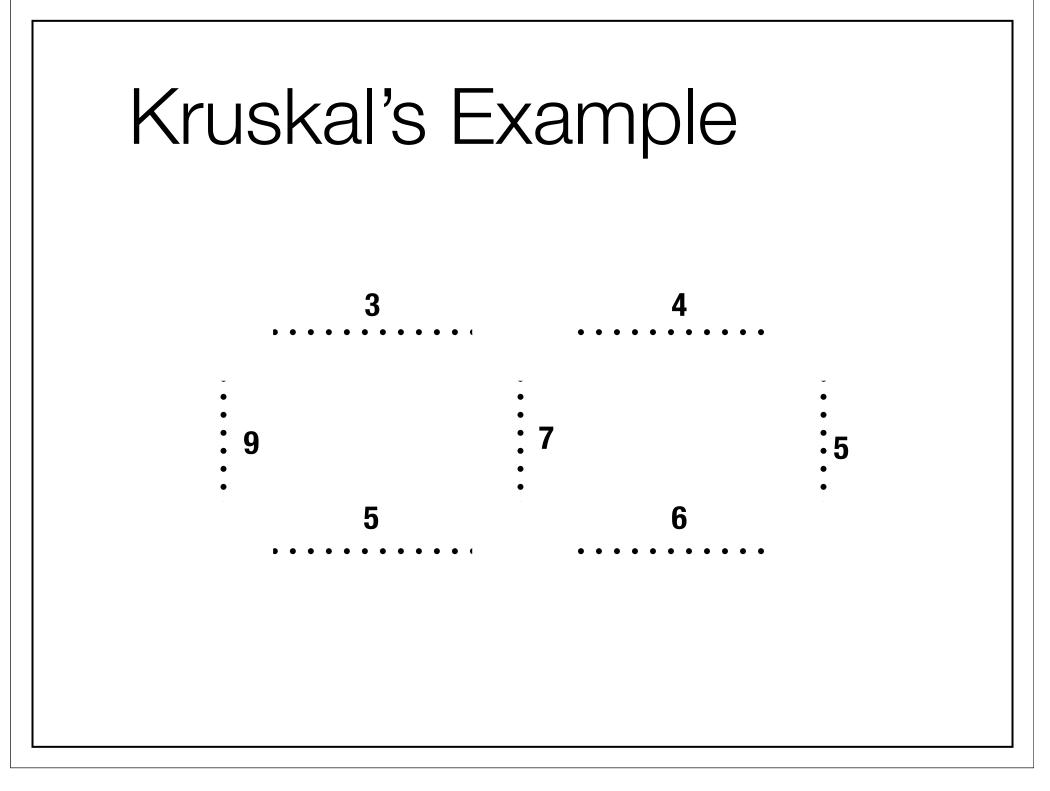
- * At any point, we can consider the set of nodes in the tree T and the set outside the tree Q
- Whatever the MST structure of the nodes in Q, at least one edge must connect the MSTs of T and Q
- * The greedy edge is just as good structurally as any other edge, and has minimum weight

Prim's Running Time

- * Each stage requires one deleteMin O(log |V|), and there are exactly |V| stages
- We update keys for each edge, updating the key costs O(log |V|) (either an insert or a decreaseKey)
- * Total time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

Kruskal's Algorithm

- Somewhat simpler conceptually, but more challenging to implement
- * Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist
- * Each added edge performs a union on two trees; perform unions until there is only one tree
- * Need special ADT for unions (Disjoint Set... we'll cover it later)



Kruskal's Justification

- * At each stage, the greedy edge e connects two nodes v and w
- * Eventually those two nodes must be connected;
 - * we must add an edge to connect trees including v and w
- We can always use e to connect v and w, which must have less weight since it's the greedy choice

Kruskal's Running Time

- * First, buildHeap costs O(|E|)
- * Each edge, need to check if it creates a cycle (costs O(log V))
- * In the worst case, we have to call |E| deleteMins
- * Total running time O(|E| log |E|); but $|E| \le |V|^2$ $O(|E| \log |V|^2) = O(2|E| \log |V|) = O(|E| \log |V|)$

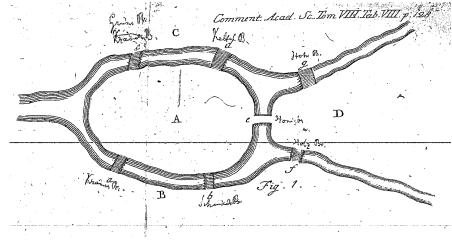
MST Wrapup

- * Connect all nodes in graph using minimum weight tree
- * Two greedy algorithms:
 - * Prim's: similar to Dijkstra's. Easier to code
 - * Kruskal's: easy on paper

Depth First Search

- * Level-order <-> Breadth-first Search Preorder <-> Depth-first Search
- * Visit vertex v, then recursively visit v's neighbors
- * To avoid visiting nodes more than once in a cyclic graph, mark visited nodes,
- * and only recurse on unmarked nodes

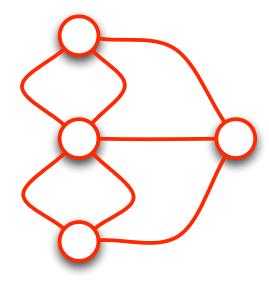
The Seven Bridges of Königsberg



http://math.dartmouth.edu/~euler/docs/originals/E053.pdf

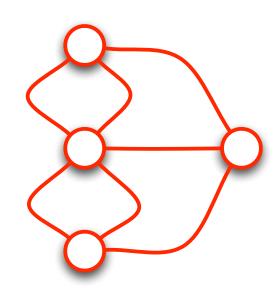
* Königsburg Bridge Problem: can one walk across the seven bridges and never cross the same bridge twice?

Euler Paths and Circuits



- * Euler path a (possibly cyclic) path that crosses each edge exactly once
- * Euler circuit an Euler path that starts and ends on the same node

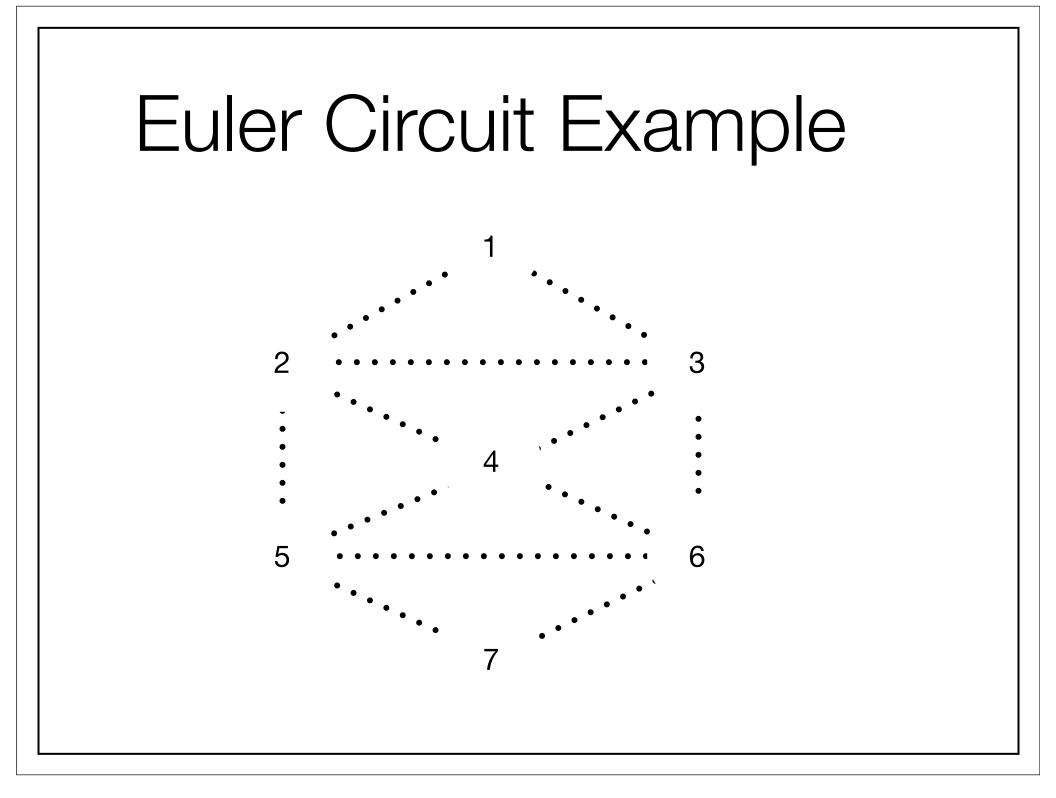
Euler's Proof



- Does an Euler path exist? No
- * Nodes with an odd degree must either be the start or end of the path
- Only one node in the Königsberg graph has odd degree; the path cannot exist
- What about an Euler circuit?

Finding an Euler Circuit

- Run a partial DFS; search down a path until you need to backtrack (mark edges instead of nodes)
- * At this point, you will have found a circuit
- * Find first node along the circuit that has unvisited edges; run a DFS starting with that edge
- Splice the new circuit into the main circuit, repeat until all edges are visited



Euler Circuit Running Time

- * All our DFS's will visit each edge once, so at least O(|E|)
- Must use a linked list for efficient splicing of path, so searching for a vertex with unused edge can be expensive
- * but cleverly saving the last scanned edge in each adjacency list can prevent having to check edges more than once, so also O(|E|)

Hamiltonian Cycle

- * Now that we know how to find Euler circuits efficiently, can we find Hamiltonian Cycles?
- * Hamiltonian cycle path that visits each node once, starts and ends on same node

Reading

- * Weiss 9.5 (MST today's material)
- Weiss 9.6 (DFS today's material)
- Weiss 9.7 (P vs. NP Monday)