Data Structures and Algorithms

Session 20. April 8, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 5 is out:
* You can use adjacency lists if you prefer

Review

* Extensions of Dijkstra's Algorithm
* Critical Path Analysis
* All Pairs Shortest Path (Floyd-Warshall)
* Maximum Flow
* Floyd-Fulkerson Algorithm

Today's Plan

* Minimum Spanning Tree
* Prim's Algorithm
* Kruskal's Algorithm
* Depth first search
* Euler Paths

Minimum Spanning Tree Problem definition

* Given connected graph G, find the connected, acyclic subgraph \mathbf{T} with minimum edge weight
* A tree that includes every node is called a spanning tree
* The method to find the MST is another example of a greedy algorithm

Motivation for Greed

* Consider any spanning tree

* Adding another edge to the tree creates exactly one cycle

* Removing an edge from that cycle restores the tree structure

Prim's Algorithm

* Grow the tree like Dijkstra's Algorithm
* Dijkstra's: grow the set of vertices to which we know the shortest path
* Prim's: grow the set of vertices we have added to the minimum tree
* Store shortest edge $\mathrm{D}[$] from each node to tree

Prim's Algorithm

* Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere
* Repeat until all nodes are in tree:
* Add the node \mathbf{v} with shortest known distance
* Update distances of adjacent nodes w:
$D[w]=\min (D[w]$, weight $(\mathbf{v}, \mathbf{w}))$

Prim's Example

Implementation Details

* Store "previous node" like Dijkstra's Algorithm; backtrack to construct tree after completion
* Of course, use a priority queue to keep track of edge weights. Either
* weep track of nodes inside heap \& decreaseKey
* or just add a new copy of the node when key decreases, and call deleteMin until you see a node not in the tree

Prim's Algorithm Justification

** At any point, we can consider the set of nodes in the tree \mathbf{T} and the set outside the tree \mathbf{Q}

* Whatever the MST structure of the nodes in \mathbf{Q}, at least one edge must connect the MSTs of \mathbf{T} and \mathbf{Q}
* The greedy edge is just as good structurally as any other edge, and has minimum weight

Prim's Running Time

* Each stage requires one deleteMin $\mathrm{O}(\log |\mathrm{V}|)$, and there are exactly $|\mathrm{V}|$ stages
* We update keys for each edge, updating the key costs $\mathrm{O}(\log |\mathrm{V}|)$ (either an insert or a decreaseKey)
* Total time: $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|E| \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Kruskal's Algorithm

* Somewhat simpler conceptually, but more challenging to implement
* Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist
* Each added edge performs a union on two trees; perform unions until there is only one tree
* Need special ADT for unions
(Disjoint Set... we'll cover it later)

Kruskal's Example

Kruskal's Justification

* At each stage, the greedy edge e connects two nodes \mathbf{v} and \mathbf{w}
* Eventually those two nodes must be connected;
* we must add an edge to connect trees including v and w
* We can always use e to connect \mathbf{v} and \mathbf{w}, which must have less weight since it's the greedy choice

Kruskal's Running Time

* First, buildHeap costs $\mathrm{O}(|\mathrm{E}|)$
* Each edge, need to check if it creates a cycle (costs O(log V))

类 In the worst case, we have to call |E| deleteMins

* Total running time $\mathrm{O}(|E| \log |E|)$; but $|E| \leq|V|^{2}$

$$
O\left(|E| \log |V|^{2}\right)=O(2|E| \log |V|)=O(|E| \log |V|)
$$

MST Wrapup

* Connect all nodes in graph using minimum weight tree
* Two greedy algorithms:
* Prim's: similar to Dijkstra's. Easier to code
* Kruskal's: easy on paper

Depth First Search

* Level-order <-> Breadth-first Search Preorder <-> Depth-first Search
* Visit vertex v, then recursively visit v's neighbors
* To avoid visiting nodes more than once in a cyclic graph, mark visited nodes,
* and only recurse on unmarked nodes

http://math.dartmouth.edu/~euler/docs/originals/E053.pdf
* Königsburg Bridge Problem: can one walk across the seven bridges and never cross the same bridge twice?

$$
\begin{aligned}
& \text { The Seven Bridges of } \\
& \text { Königsberg }
\end{aligned}
$$

* Königsburg Bridge Problem: can one walk across the seven bridges and never cross the same bridge twice?
* Euler solved the problem by inventing graph theory

Euler Paths and Circuits

* Euler path - a (possibly cyclic) path that crosses each edge exactly once
* Euler circuit - an Euler path that starts and ends on the same node

Euler's Proof

* Does an Euler path exist? No

* Nodes with an odd degree must either be the start or end of the path
* Only one node in the Königsberg graph has odd degree; the path cannot exist
* What about an Euler circuit?

Finding an Euler Circuit

* Run a partial DFS; search down a path until you need to backtrack (mark edges instead of nodes)
* At this point, you will have found a circuit
* Find first node along the circuit that has unvisited edges; run a DFS starting with that edge
* Splice the new circuit into the main circuit, repeat until all edges are visited

Euler Circuit Example

Euler Circuit Example

Euler Circuit Example

Euler Circuit Example

Euler Circuit Example

Euler Circuit Running Time

* All our DFS's will visit each edge once, so at least O(|E|)
* Must use a linked list for efficient splicing of path, so searching for a vertex with unused edge can be expensive
* but cleverly saving the last scanned edge in each adjacency list can prevent having to check edges more than once, so also $\mathrm{O}(|\mathrm{E}|)$

Hamiltonian Cycle

* Now that we know how to find Euler circuits efficiently, can we find Hamiltonian Cycles?
* Hamiltonian cycle - path that visits each node once, starts and ends on same node

Reading

* Weiss 9.5 (MST - today's material)
* Weiss 9.6 (DFS - today's material)
* Weiss 9.7 (P vs. NP - Monday)

