Announcements

** Homework 1 up on website
米 Due Feb. $9^{\text {th }}$ before class
** Office Hour Changes:

* My OH moved to Wednesday (this week only)
** Nihkil's OH moved to Thurs 4-6 (was 10-12)

Review

* Administrative announcements
* Brief Introduction

Plan

* Mathematical Background
* Theoretical Algorithm Analysis
* Big-Oh Notation
* Examples

Math Background: Exponents

$$
\begin{aligned}
X^{A} X^{B} & =X^{A+B} \\
\frac{X^{A}}{X^{B}} & =X^{A-B} \\
\left(X^{A}\right)^{B} & =X^{A B} \\
X^{N}+X^{N} & =2 X^{N} \neq X^{2 N} \\
2^{N}+2^{N} & =2^{N+1}
\end{aligned}
$$

Math Background: Logarithms

$$
X^{A}=B \text { iff } \log _{X} B=A
$$

$$
\begin{aligned}
\log _{A} B & =\frac{\log _{C} B}{\log _{C} A} ; A, B, C>0, A \neq 1 \\
\log A B & =\log A+\log B ; A, B>0
\end{aligned}
$$

Math Background: Series

$$
\begin{gathered}
\sum_{i=0}^{N} 2^{i}=2^{N+1}-1 \\
\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1} \\
\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \approx \frac{N^{2}}{2} \\
\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6} \approx \frac{N^{3}}{3}
\end{gathered}
$$

Math Background: Proofs

* Proof by Induction:
* Prove base case,
** Inductive hypothesis. Prove claim for current state assuming truth in previous state
* Proof by Contradiction: assume claim is false.
** Show that assumption leads to contradiction

Big-Oh Notation

** We adopt special notation to define upper bounds and lower bounds on functions

* In CS, usually the functions we are bounding are running times, memory requirements.
* We will refer to the running time as $T(N)$

Definitions

** For N greater than some constant, we have the following definitions:

$$
\begin{aligned}
& T(N)=O(f(N)) \leftarrow T(N) \leq c f(N) \\
& T(N)=\Omega(g(N)) \leftarrow T(N) \geq c f(N) \\
& T(N)=\Theta(h(N)) \leftarrow \begin{array}{l}
T(N)=O(h(N)), \\
T(N)=\Omega(h(N))
\end{array}
\end{aligned}
$$

There exists some constant c such that cf(N) bounds T(N)

Definitions

** Alternately, $\mathrm{O}(\mathrm{f}(\mathrm{N}))$ can be thought of as meaning

$$
T(N)=O(f(N)) \leftarrow \lim _{N \rightarrow \infty} f(N) \geq \lim _{N \rightarrow \infty} T(N)
$$

* Big-Oh notation is also referred to as asymptotic analysis, for this reason.

Comparing Growth Rates

$$
T_{1}(N)=O(f(N)) \text { and } T_{2}(N)=O(g(N))
$$

then
(a) $\quad T_{1}(N)+T_{2}(N)=O(f(N)+g(N))$
(b) $\quad T_{1}(N) T_{2}(N)=O(f(N) g(N))$
** If you have to, use l'Hôpital's rule

$$
\lim _{N \rightarrow \infty} f(N) / g(N)=\lim _{N \rightarrow \infty} f^{\prime}(N) / g^{\prime}(N)
$$

Example: Maximum Subsequence

** Given a sequence of integers (possibly negative), find the subsequence whose sum is the maximum

Cubic Time Algorithm

1. for $\mathrm{i}=1$ to $\mathrm{N}\{$
2. for $\mathrm{j}=\mathrm{i}$ to N \{
3. sum = 0
4. for $\mathrm{k}=\mathrm{i}$ to j

$$
T(N)=\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{j} 1
$$

5.

sum = sum $+A[k]$
if (sum > maxSum)
7. maxSum = sum
8. \}
9. \}

Cubic Time Algorithm

$$
\begin{gathered}
T(N)=\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{j} 1 \\
T(N)=\sum_{i=1}^{N} \sum_{j=i}^{N} j-i+1 \\
T(N)=\sum_{i=1}^{N} \frac{(N-i+2)(N-i+1)}{2} \\
T(N)=\frac{N^{3}+3 N^{2}+2 N}{6}
\end{gathered}
$$

