Announcements

- # Homework 1 up on website
 - * Due Feb. 9th before class
- * Office Hour Changes:
 - My OH moved to Wednesday (this week only)
 - * Nihkil's OH moved to Thurs 4-6 (was 10-12)

Review

* Administrative announcements

* Brief Introduction

Plan

- * Mathematical Background
- * Theoretical Algorithm Analysis
 - # Big-Oh Notation
 - * Examples

Math Background: Exponents

Math Background: Logarithms

- $X^A = B$ iff $\log_X B = A$
- $\log_A B = \frac{\log_C B}{\log_C A}; A, B, C > 0, A \neq 1$ $\log AB = \log A + \log B; A, B > 0$

Math Background: Series

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

$$\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \approx \frac{N^{2}}{2}$$

$$\sum_{i=1}^{N} i^{2} = \frac{N(N+1)(2N+1)}{6} \approx \frac{N^{3}}{3}$$

Math Background: Proofs

- * Proof by Induction:
 - * Prove base case,
 - Inductive hypothesis. Prove claim for current state assuming truth in previous state
- * Proof by Contradiction: assume claim is false.
 - Show that assumption leads to contradiction

Big-Oh Notation

- We adopt special notation to define upper bounds and lower bounds on functions
- In CS, usually the functions we are bounding are running times, memory requirements.
- * We will refer to the running time as T(N)

Definitions

* For N greater than some constant, we have the following definitions:

$$T(N) = O(f(N)) \leftarrow T(N) \le cf(N)$$

 $T(N) = \Omega(g(N)) \leftarrow T(N) \ge cf(N)$

$$T(N) = \Theta(h(N)) \leftarrow \begin{array}{c} T(N) = O(h(N)), \\ T(N) = \Omega(h(N)) \end{array}$$

* There exists some constant c such that cf(N) bounds T(N)

Definitions

* Alternately, O(f(N)) can be thought of as meaning $T(N) = O(f(N)) \leftarrow \lim_{N \to \infty} f(N) \ge \lim_{N \to \infty} T(N)$

* Big-Oh notation is also referred to as asymptotic analysis, for this reason.

Comparing Growth Rates

 $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$

then

(a)
$$T_1(N) + T_2(N) = O(f(N) + g(N))$$

(b) $T_1(N)T_2(N) = O(f(N)g(N))$

* If you have to, use l'Hôpital's rule

$$\lim_{N \to \infty} f(N)/g(N) = \lim_{N \to \infty} f'(N)/g'(N)$$

Example: Maximum Subsequence

Given a sequence of integers (possibly negative), find the subsequence whose sum is the maximum

-2	11	-4	13	-5	-2
----	----	----	----	----	----

Cubic Time Algorithm # 1. for i=1 to N { $N \quad j$ Nfor j=i to N { 2. $T(N) = \sum \sum \sum 1$ 3. sum = 0i=1 j=i k=i4. for k=i to j 5. sum = sum + A[k]6. if (sum > maxSum) 7. maxSum = sum8. 9. }

Cubic Time Algorithm

$$T(N) = \sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{j} 1$$
$$T(N) = \sum_{i=1}^{N} \sum_{j=i}^{N} j - i + 1$$

$$T(N) = \sum_{i=1}^{N} \frac{(N-i+2)(N-i+1)}{2}$$
$$T(N) = \frac{N^3 + 3N^2 + 2N}{N^3 + 3N^2 + 2N}$$

$$\Gamma(N) = \frac{1}{6}$$