Announcements

* Homework 1 up on website
% Due Feb. 9" before class

* Office Hour Changes:
* My OH moved to Wednesday (this week only)
* Nihkil’'s OH moved to Thurs 4-6 (was 10-12)

Review

¥ Administrative announcements

* Brief Introduction

FPlan

* Mathematical Background
* Theoretical Algorithm Analysis
* Big-Oh Notation

* Examples

Math Backgrouna:

EXponents
XAXB _ XA—I—B
XA
ﬁ _ XA—B
(XA)B _ XAB
N
XN xN = oxV £ x2N

Math Backgrouna:
L ogarithms

X4 =DBiff logy B=A

log - B
28C . A B.C>0,A+1

I B

log AB logA+logB; A, B >0

Math Backgrouna:
Series

ZQ’L _ 2N—|-1_1
1=0
N
. AN—l—l 1
Sa -
A—1
=0
i\f: N(N +1) _ N?
T = ~ —
2 2

Math Backgrouna:
Proofs

* Proof by Induction:
* Prove base case,

* Inductive hypothesis. Prove claim for current
state assuming truth in previous state

* Proof by Contradiction: assume claim is false.

* Show that assumption leads to contradiction

Big-Oh Notation

* We adopt special notation to define upper
bounds and lower bounds on functions

* In CS, usually the functions we are bounding are
running times, memory requirements.

* We will refer to the running time as T(N)

Definitions

* For N greater than some constant, we have the
following definitions:

T(N) = O(f(N)) <= T(N)<cf(N)

T(N) = QgN)) —=T(N) =z cf(N)

T(N) = O(h(N)),

TN = O = vy = o(n(v))

* There exists some constant ¢ such that cf(N)
bounds T(N)

Definitions

* Alternately, O(f(N)) can be thought of as meaning
T(N)=O(f(N)) « lim f(N)> lim T(N)

N — 00 N—>oo

* Big-Oh notation is also referred to as asymptotic
analysis, for this reason.

100

90

80

70

60

50

40

30

20

10

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Comparing Growth
Rates

T1(N)=O(f(N)) and To(N) = O(g(N))
then
(@) Ti(N)+Ta(N)=O(f(N)+ g(N))
(b) Ti(N)I2(N) = O(f(N)g(N))

* If you have to, use I’Ho6pital’s rule

lim f(N)/g(N)= lim f'(N)/g'(N)

N — o0 N — o0

Example: Maximum
Subsequence

* Given a sequence of integers (possibly negative),
find the subsequence whose sum is the maximum

2 | 11| 4 | 13| 5| -2

Cubic Time Algorithm

% 1. fori=1to N {

for j=i to N { N N j
sum =0 T(N)=) » >
for k=i to | i=1 j=i k=i

sum = sum+A[K]
if (sum > maxSum)
maxSum = sum

OCONOOTA~WDN

