Announcements

* Homework 1 up on website
% Due Feb. 9" before class

* Office Hour Changes:
* My OH moved to Wednesday (this week only)
* Nihkil’'s OH moved to Thurs 4-6 (was 10-12)




Review

¥ Administrative announcements

* Brief Introduction




FPlan

* Mathematical Background
* Theoretical Algorithm Analysis
* Big-Oh Notation

* Examples




Math Backgrouna:
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Math Backgrouna:
L ogarithms
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Math Backgrouna:
Series
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Math Backgrouna:
Proofs

* Proof by Induction:
* Prove base case,

* Inductive hypothesis. Prove claim for current
state assuming truth in previous state

* Proof by Contradiction: assume claim is false.

* Show that assumption leads to contradiction




Big-Oh Notation

* We adopt special notation to define upper
bounds and lower bounds on functions

* In CS, usually the functions we are bounding are
running times, memory requirements.

* We will refer to the running time as T(N)




Definitions

* For N greater than some constant, we have the
following definitions:

T(N) = O(f(N)) <= T(N)<cf(N)

T(N) = QgN)) —=T(N) =z cf(N)

T(N) = O(h(N)),

TN = O = vy = o(n(v))

* There exists some constant ¢ such that cf(N)
bounds T(N)




Definitions

* Alternately, O(f(N)) can be thought of as meaning
T(N)=O(f(N)) « lim f(N)> lim T(N)

N — 00  N—>oo

* Big-Oh notation is also referred to as asymptotic
analysis, for this reason.
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Comparing Growth
Rates

T1(N)=O(f(N)) and To(N) = O(g(N))
then
(@)  Ti(N)+Ta(N)=O(f(N)+ g(N))
(b)  Ti(N)I2(N) = O(f(N)g(N))

* If you have to, use I’Ho6pital’s rule

lim f(N)/g(N)= lim f'(N)/g'(N)

N — o0 N — o0




Example: Maximum
Subsequence

* Given a sequence of integers (possibly negative),
find the subsequence whose sum is the maximum

2 | 11| 4 | 13| 5| -2




Cubic Time Algorithm

% 1. fori=1to N {

for j=i to N { N N j
sum =0 T(N)=) » >
for k=i to | i=1 j=i k=i

sum = sum+A[K]
if (sum > maxSum)
maxSum = sum
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