
Announcements

Homework 1 up on website

Due Feb. 9th before class

Office Hour Changes: 

My OH moved to Wednesday (this week only)

Nihkil’s OH moved to Thurs 4-6 (was 10-12)



Review

Administrative announcements

Brief Introduction



Plan

Mathematical Background

Theoretical Algorithm Analysis

Big-Oh Notation

Examples



Math Background: 
Exponents

XAXB = XA+B

XA

XB
= XA−B

(
XA

)B
= XAB

XN + XN = 2XN != X2N

2N + 2N = 2N+1



Math Background:
Logarithms

XA = B iff logX B = A

logA B =
logC B

logC A
; A, B,C > 0, A != 1

log AB = log A + log B; A, B > 0



Math Background:
Series

N∑

i=0

2i = 2N+1 − 1

N∑

i=0

Ai =
AN+1 − 1

A− 1
N∑

i=1

i =
N(N + 1)

2
! N2

2

N∑

i=1

i2 =
N(N + 1)(2N + 1)

6
≈ N3

3



Math Background:
Proofs
Proof by Induction:

Prove base case,

Inductive hypothesis. Prove claim for current 
state assuming truth in previous state

Proof by Contradiction: assume claim is false.

 Show that assumption leads to contradiction



Big-Oh Notation

We adopt special notation to define upper 
bounds and lower bounds on functions

In CS, usually the functions we are bounding are 
running times, memory requirements.

We will refer to the running time as T(N)



Definitions

T (N) = O(f(N))← T (N) ≤ cf(N)

T (N) = Ω(g(N))← T (N) ≥ cf(N)

T (N) = Θ(h(N))← T (N) = O(h(N)),
T (N) = Ω(h(N))

For N greater than some constant, we have the 
following definitions:

There exists some constant c such that cf(N) 
bounds T(N)



Definitions

Alternately, O(f(N)) can be thought of as meaning

Big-Oh notation is also referred to as asymptotic 
analysis, for this reason.

T (N) = O(f(N))← lim
N→∞

f(N) ≥ lim
N→∞

T (N)
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Comparing Growth 
Rates
T1(N) = O(f(N)) and T2(N) = O(g(N))

then
(a) T1(N) + T2(N) = O(f(N) + g(N))
(b) T1(N)T2(N) = O(f(N)g(N))

If you have to, use l’Hôpital’s rule

lim
N→∞

f(N)/g(N) = lim
N→∞

f ′(N)/g′(N)



Example: Maximum 
Subsequence

Given a sequence of integers (possibly negative), 
find the subsequence whose sum is the maximum

-2 11 -4 13 -5 -2



1. for i=1 to N {
2.    for j=i to N {
3.        sum = 0
4.        for k=i to j 
5.            sum = sum+A[k]
6.        if (sum > maxSum)
7.            maxSum = sum
8.     }
9. }

Cubic Time Algorithm

T (N) =
N∑

i=1

N∑

j=i

j∑

k=i

1



Cubic Time Algorithm

T (N) =
N∑

i=1

N∑

j=i

j∑

k=i

1

T (N) =
N∑

i=1

N∑

j=i

j − i + 1

T (N) =
N3 + 3N2 + 2N

6

T (N) =
N∑

i=1

(N − i + 2)(N − i + 1)
2


