
Announcements

Homework 1 up on website

Due Feb. 9th before class

Office Hour Changes:

My OH moved to Wednesday (this week only)

Nihkil’s OH moved to Thurs 4-6 (was 10-12)

Review

Administrative announcements

Brief Introduction

Plan

Mathematical Background

Theoretical Algorithm Analysis

Big-Oh Notation

Examples

Math Background:
Exponents

XAXB = XA+B

XA

XB
= XA−B

(
XA

)B
= XAB

XN + XN = 2XN != X2N

2N + 2N = 2N+1

Math Background:
Logarithms

XA = B iff logX B = A

logA B =
logC B

logC A
; A, B,C > 0, A != 1

log AB = log A + log B; A, B > 0

Math Background:
Series

N∑

i=0

2i = 2N+1 − 1

N∑

i=0

Ai =
AN+1 − 1

A− 1
N∑

i=1

i =
N(N + 1)

2
! N2

2

N∑

i=1

i2 =
N(N + 1)(2N + 1)

6
≈ N3

3

Math Background:
Proofs
Proof by Induction:

Prove base case,

Inductive hypothesis. Prove claim for current
state assuming truth in previous state

Proof by Contradiction: assume claim is false.

 Show that assumption leads to contradiction

Big-Oh Notation

We adopt special notation to define upper
bounds and lower bounds on functions

In CS, usually the functions we are bounding are
running times, memory requirements.

We will refer to the running time as T(N)

Definitions

T (N) = O(f(N))← T (N) ≤ cf(N)

T (N) = Ω(g(N))← T (N) ≥ cf(N)

T (N) = Θ(h(N))← T (N) = O(h(N)),
T (N) = Ω(h(N))

For N greater than some constant, we have the
following definitions:

There exists some constant c such that cf(N)
bounds T(N)

Definitions

Alternately, O(f(N)) can be thought of as meaning

Big-Oh notation is also referred to as asymptotic
analysis, for this reason.

T (N) = O(f(N))← lim
N→∞

f(N) ≥ lim
N→∞

T (N)

0 50 100
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

log N

log
2
 N

N

N log N

N
2

N
3

2
N

Comparing Growth
Rates
T1(N) = O(f(N)) and T2(N) = O(g(N))

then
(a) T1(N) + T2(N) = O(f(N) + g(N))
(b) T1(N)T2(N) = O(f(N)g(N))

If you have to, use l’Hôpital’s rule

lim
N→∞

f(N)/g(N) = lim
N→∞

f ′(N)/g′(N)

Example: Maximum
Subsequence

Given a sequence of integers (possibly negative),
find the subsequence whose sum is the maximum

-2 11 -4 13 -5 -2

1. for i=1 to N {
2. for j=i to N {
3. sum = 0
4. for k=i to j
5. sum = sum+A[k]
6. if (sum > maxSum)
7. maxSum = sum
8. }
9. }

Cubic Time Algorithm

T (N) =
N∑

i=1

N∑

j=i

j∑

k=i

1

Cubic Time Algorithm

T (N) =
N∑

i=1

N∑

j=i

j∑

k=i

1

T (N) =
N∑

i=1

N∑

j=i

j − i + 1

T (N) =
N3 + 3N2 + 2N

6

T (N) =
N∑

i=1

(N − i + 2)(N − i + 1)
2

