Data Structures and Algorithms

Session 19. April 6, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

米 Homework 4 due by midnight tonight

* Homework 5 assigned

Review

* Topological Sort
* Shortest Path
* Unweighted version: Breadth-first search
** Weighted version: Dijkstra's Algorithm

Today's Plan

粦 Extensions of Dijkstra's Algorithm

* Critical Path Analysis
* All Pairs Shortest Path (Floyd-Warshall)
* Maximum Flow
* Floyd-Fulkerson Algorithm

Critical Path Analysis

* Recall motivational example for topological sort: edges represent dependencies between tasks
** Consider a similar event-node graph in which nodes represent events and edges represent dependencies and costs
* We want to find the fastest time we can complete all tasks if we can run job in parallel

Critical Path Example

米 We start with the activity graph, which includes time for each activity

Critical Path Example

* Convert it to an event-node graph, where edges represent the transition between events

Longest Path in a DAG

** Store "longest known path" for each node

* Start node $=0$

粦 Max of incoming nodes' longest known path + incoming edge cost

米 Longest path from start to end is critical path

Critical Path for BBQ

Latest Completion Time

** If you want to procrastinate, compute the latest you can finish each job without delaying total time

* Set time of end node to critical path time
* Set nodes' latest completion time to: min of (outgoing node time) - (outgoing edge cost)

米 (Similar to finding the shortest path to end following edges backwards)

All Pairs Shortest Path

* Dijkstra's Algorithm finds shortest paths from one node to all other nodes
* What about computing shortest paths for all pairs of nodes?
* We can run Dijkstra's $|\mathrm{V}|$ times. Total cost: $O\left(|V|^{3}\right)$

米 Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)

Recursive Motivation

类 Consider the set of numbered nodes $\mathbf{1}$ through \mathbf{k}
＊The shortest path between any node \mathbf{i} and \mathbf{j} using only nodes in the set $\{\mathbf{1}, \ldots, \mathbf{k}\}$ is the minimum of

米 shortest path from \mathbf{i} to \mathbf{j} using nodes $\{\mathbf{1}, \ldots, \mathbf{k} \mathbf{- 1}\}$
粦 shortest path from \mathbf{i} to \mathbf{j} using node \mathbf{k}
类 $\operatorname{path}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\min (\operatorname{path}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$ ， path（i，k，k－1）＋path（k，j，k－1））

Dynamic Programming

米 Instead of repeatedly computing recursive calls, store lookup table

* To compute path(i,j,k) for any i, j, we only need to look up path(-,-, k-1)
* but never k-2, k-3, etc.
* We can incrementally compute the path matrix for $\mathrm{k}=0$, then use it to compute for $\mathrm{k}=1$, then $\mathrm{k}=2 \ldots$

Floyd-Warshall Code

* Initialize d = weight matrix
* for ($k=0$; $k<N$; $k++$)

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad \text { for }(j=0 ; j<N ; j++) \\
& \quad \text { if }(d[i][j]>d[i][k]+d[k][j]) \\
& \quad d[i][j]=d[i][k]+d[k][j] ;
\end{aligned}
$$

** Additionally, we can store the actual path by keeping a "midpoint" matrix

All Pairs Shortest Path Example

$\mathbf{K}=\mathbf{0} \quad$| | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | - | 4 | - | - |
| 2 | - | - | 3 | 1 |
| 3 | 2 | - | - | 4 |
| 4 | - | - | 2 | - |

All Pairs Shortest Path Example

$\mathrm{K}=0$		1	2	3	4	
	1	-	4	-	-	
	2	-	-	3	1	
	3	2	-	-	4	
	4	-	-	2	-	
$\mathrm{K}=1$		1	2	3	4	(3)
	1	-	4	-	-	
	2	-	-	3	1	
	3	2	6	-	4	
	4	-	-	2	-	

All Pairs Shortest Path Example

$\mathbf{K = 1}$| | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | - | 4 | - | - |
| 2 | - | - | 3 | 1 |
| 3 | 2 | 6 | - | 4 |
| 4 | - | - | 2 | - |

	1	2	3	4
1	-	4	7	5
2	-	-	3	1
3	2	6	9	4
4	-	-	2	-

All Pairs Shortest Path Example

All Pairs Shortest Path Example

		1	2	3	4
	1	9	4	7	5
$\mathrm{K}=3$	2	5	9	3	1
	3	2	6	9	4
	4	4	8	2	6
		1	2	3	4
	1	9	4	7	5
$\mathrm{K}=4$	2	5	9	3	1
	3	2	6	6	4
	4	4	8	2	6

Transitive Closure

* For any nodes i, j, is there a path from i to j ?
* Instead of computing shortest paths, just compute Boolean if a path exists
* path(i,j,k) = path(i, $, \mathrm{j}, \mathrm{k}-1) \mathrm{OR}$ path(i,k,k-1) AND path(k,j,k-1)

Maximum Flow

* Consider a graph representing flow capacity
* Directed graph with source and sink nodes

米 Physical analogy: water pipes

* Each edge weight represents the capacity: how much "water" can run through the pipe from source to sink?

Capacity Example

MAXIMUM FLOW SOLUTION

Max Flow Algorithm

* Create 2 copies of original graph: flow graph and residual graph

米 The flow graph tells us how much flow we have currently on each edge

* The residual graph tells us how much flow is available on each edge
** Initially, the residual graph is the original graph

Augmenting Path

* Find any path in residual graph from source to sink米 called an augmenting path.
* The minimum weight along path can be added as flow to the flow graph
* But we don't want to commit to this flow; add a reverse-direction undo edge to the residual graph

Example

Example

Example

Example

Example

Example

RESIDUAL

FLOW

Running Times

* If integer weights, each augmenting path increases flow by at least 1
* Costs $\mathrm{O}(|\mathrm{E}|)$ to find an augmenting path
* For max flow f, finding max flow (FloydFulkerson) costs $O(f|E|)$
* Choosing shortest unweighted path (EdmondsKarp), $O\left(|V||E|^{2}\right)$

Sports Elimination

* In many organized sports, teams are split into divisions

米 the team in a division with the most wins at end of season earns a divisional title
** Fans and writers like to talk about whether a team is mathematically eliminated from the division race

米 The standard formula is often wrong, instead, compute a max flow

Standard Formula

*) If team \mathbf{i} has $\mathbf{W}[\mathbf{i}]$ wins, and $\mathbf{R}[\mathbf{i}]$ remaining games, pretend \mathbf{i} wins all of its $\mathbf{R [i]}$ games. $\mathbf{W}[i]+\mathbf{R}[i]$

* Pretend all other teams in division win no more games. If $\mathbf{W}[\mathbf{i}]+\mathbf{R}[\mathbf{i}]>\mathbf{W}[\mathbf{j}]$, for all \mathbf{j}, \mathbf{i} can still win

粦 The problem is the other teams may have games against each other; both teams can't lose

Max Flow Graph

Max Flow Solution: team i

* Connect source to all game nodes (team \mathbf{j}, team \mathbf{k})
* Capacity of edge to game node is \# of games btw \mathbf{j} and \mathbf{k}
* Connect game nodes to participating team nodes with infinite capacity
** Connect team nodes to sink, capacity = \# of games before team \mathbf{j} overtakes team \mathbf{i}
* Team i can win only if max flow saturates outgoing edges from source

Reading

* Weiss Section 9.5

