
Data Structures and
Algorithms
Session 19. April 6, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 4 due by midnight tonight

Homework 5 assigned

Review

Topological Sort

Shortest Path

Unweighted version: Breadth-first search

Weighted version: Dijkstra’s Algorithm

Today’s Plan

Extensions of Dijkstra’s Algorithm

Critical Path Analysis

All Pairs Shortest Path (Floyd-Warshall)

Maximum Flow

Floyd-Fulkerson Algorithm

Critical Path Analysis

Recall motivational example for topological sort:
edges represent dependencies between tasks

Consider a similar event-node graph in which
nodes represent events and edges represent
dependencies and costs

We want to find the fastest time we can complete
all tasks if we can run job in parallel

Critical Path Example

We start with the activity graph, which includes
time for each activity

Bake
Potatoes

45

Bake Corn
Bread

25

Serve Food

Make
Steak
Sauce

20

Grill Steaks
10

Start
Cooking

Light Grill
10

Mix Corn
Bread

Ingredients
15

Scrub
Potatoes

5

Critical Path Example

Convert it to an event-node graph, where edges
represent the transition between events

Potatoes
Done

Start
Baking

Corn Bread

Serve Food

Sauce
Done

Start
Grilling

Start
Cooking

Light
Grill

Start
Mixing

Ingredients

Start
Washing
Potatoes

Corn Bread
Done

Finish
Mixing

Ingredients

Steaks
Done

Start
Baking

Potatoes

Start
Sauce

Grill
Ready

Potatoes
Clean

5 45

10

20

10

15 25

Longest Path in a DAG

Store “longest known path” for each node

Start node = 0

Max of incoming nodes’ longest known path +
incoming edge cost

Longest path from start to end is critical path

Critical Path for BBQ

Potatoes
Done

Start
Baking

Corn Bread

Serve Food

Sauce
Done

Start
Grilling

Start
Cooking

Light
Grill

Start
Mixing

Ingredients

Start
Washing
Potatoes

Corn Bread
Done

Finish
Mixing

Ingredients

Steaks
Done

Start
Baking

Potatoes

Start
Sauce

Grill
Ready

Potatoes
Clean

5 45

10

20

10

15 25

max(10, 20)

50

30

40

max(50, 30, 40)

Latest Completion Time

If you want to procrastinate, compute the latest
you can finish each job without delaying total time

Set time of end node to critical path time

Set nodes’ latest completion time to:
min of (outgoing node time) - (outgoing edge cost)

(Similar to finding the shortest path to end
following edges backwards)

All Pairs Shortest Path

Dijkstra’s Algorithm finds shortest paths from one
node to all other nodes

What about computing shortest paths for all pairs
of nodes?

We can run Dijkstra’s |V| times. Total cost:

Floyd-Warshall algorithm is often faster in practice
(though same asymptotic time)

O(|V |3)

Recursive Motivation

Consider the set of numbered nodes 1 through k

The shortest path between any node i and j using
only nodes in the set {1, ..., k} is the minimum of

shortest path from i to j using nodes {1, ..., k-1}

shortest path from i to j using node k

path(i,j,k) = min(path(i,j,k-1),
 path(i,k,k-1)+ path(k,j,k-1))

Dynamic Programming

Instead of repeatedly computing recursive calls,
store lookup table

To compute path(i,j,k) for any i,j, we only need to
look up path(-,-, k-1)

but never k-2, k-3, etc.

We can incrementally compute the path matrix for
k=0, then use it to compute for k=1, then k=2...

Floyd-Warshall Code

Initialize d = weight matrix

for (k=0; k<N; k++)
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 if (d[i][j] > d[i][k]+d[k][j])
 d[i][j] = d[i][k] + d[k][j];

Additionally, we can store the actual path by
keeping a “midpoint” matrix

All Pairs Shortest Path
Example

1 2 3 4

1

2

3

4

- 4 - -

- - 3 1

2 - - 4

- - 2 -
1

2

3

4

4

2

1

4
3

2

K=0

All Pairs Shortest Path
Example

1 2 3 4

1

2

3

4

- 4 - -

- - 3 1

2 - - 4

- - 2 -
1

2

3

4

4

2

1

4
3

2

K=0

1 2 3 4

1

2

3

4

- 4 - -

- - 3 1

2 6 - 4

- - 2 -

K=1

All Pairs Shortest Path
Example

1

2

3

4

4

2

1

4
3

2

1 2 3 4

1

2

3

4

- 4 - -

- - 3 1

2 6 - 4

- - 2 -

K=1

1 2 3 4

1

2

3

4

- 4 7 5

- - 3 1

2 6 9 4

- - 2 -

K=2

All Pairs Shortest Path
Example

1

2

3

4

4

2

1

4
3

2

1 2 3 4

1

2

3

4

- 4 7 5

- - 3 1

2 6 9 4

- - 2 -

K=2

1 2 3 4

1

2

3

4

9 4 7 5

5 9 3 1

2 6 9 4

4 8 2 6

K=3

All Pairs Shortest Path
Example

1

2

3

4

4

2

1

4
3

2

1 2 3 4

1

2

3

4

9 4 7 5

5 9 3 1

2 6 9 4

4 8 2 6

K=3

1 2 3 4

1

2

3

4

9 4 7 5

5 9 3 1

2 6 6 4

4 8 2 6

K=4

Transitive Closure

For any nodes i, j, is there a path from i to j?

Instead of computing shortest paths, just compute
Boolean if a path exists

path(i,j,k) = path(i,j,k-1) OR
 path(i,k,k-1) AND path(k,j,k-1)

Maximum Flow

Consider a graph representing flow capacity

Directed graph with source and sink nodes

Physical analogy: water pipes

Each edge weight represents the capacity: how
much “water” can run through the pipe from
source to sink?

Capacity Example
s

a b

c d

t

23

1

4
3 2

2 3

MAXIMUM FLOW SOLUTION

s

a b

c d

t

23

0

1
2 2

2 3

Max Flow Algorithm

Create 2 copies of original graph: flow graph and
residual graph

The flow graph tells us how much flow we have
currently on each edge

The residual graph tells us how much flow is
available on each edge

Initially, the residual graph is the original graph

Augmenting Path

Find any path in residual graph from source to sink

called an augmenting path.

The minimum weight along path can be added as
flow to the flow graph

But we don’t want to commit to this flow; add a
reverse-direction undo edge to the residual graph

s

a b

c d

t

23

1

4
3 2

2 3

s

a b

c d

t

Example

RESIDUAL FLOW

s

a b

c d

t

23

1

4
3 2

2 3

s

a b

c d

t

Example

RESIDUAL FLOW

s

a b

c d

t

2

1

1
3 2

2

s

a b

c d

t

3

3

3

Example

RESIDUAL FLOW

Example

RESIDUAL FLOW

s

a b

c d

t

2

1

1
3 2

2

s

a b

c d

t

3

3

3

3

3

3

s

a b

c d

t

2

1

1
3 2

2

s

a b

c d

t

3

3

3

3

3

3

Example

RESIDUAL FLOW

s

a b

c d

t

2

1

1
1 2

2

s

a b

c d

t

3

1

3

1

3

3

2

2

2
2

2

Example

RESIDUAL FLOW

Running Times

If integer weights, each augmenting path
increases flow by at least 1

Costs O(|E|) to find an augmenting path

For max flow , finding max flow (Floyd-
Fulkerson) costs

Choosing shortest unweighted path (Edmonds-
Karp),

f
O(f |E|)

O(|V ||E|2)

Sports Elimination
In many organized sports, teams are split into
divisions

the team in a division with the most wins at end
of season earns a divisional title

Fans and writers like to talk about whether a team
is mathematically eliminated from the division race

The standard formula is often wrong, instead,
compute a max flow

Standard Formula

If team i has W[i] wins, and R[i] remaining games,
pretend i wins all of its R[i] games. W[i]+R[i]

Pretend all other teams in division win no more
games. If W[i]+R[i] > W[j], for all j, i can still win

The problem is the other teams may have games
against each other; both teams can’t lose

Max Flow Graph

s

1-2

1-3

1-4

2-3

2-4

3-4

1

2

3

4

t

ga

m
es

 b
tw

 1
 a

nd
 2

∞

�
[0]+�

[0]- �
[1]

Max Flow Solution:
team i
Connect source to all game nodes (team j, team k)

Capacity of edge to game node is # of games btw j and k

Connect game nodes to participating team nodes with
infinite capacity

Connect team nodes to sink,
capacity = # of games before team j overtakes team i

Team i can win only if max flow saturates outgoing edges
from source

Reading

Weiss Section 9.5

