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Announcements

Homework 4 due by midnight tonight

Homework 5 assigned



Review

Topological Sort

Shortest Path

Unweighted version: Breadth-first search

Weighted version: Dijkstra’s Algorithm



Today’s Plan

Extensions of Dijkstra’s Algorithm

Critical Path Analysis

All Pairs Shortest Path (Floyd-Warshall)

Maximum Flow

Floyd-Fulkerson Algorithm



Critical Path Analysis

Recall motivational example for topological sort: 
edges represent dependencies between tasks

Consider a similar event-node graph in which 
nodes represent events and edges represent 
dependencies and costs

We want to find the fastest time we can complete 
all tasks if we can run job in parallel



Critical Path Example

We start with the activity graph, which includes 
time for each activity
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Critical Path Example

Convert it to an event-node graph, where edges 
represent the transition between events
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Longest Path in a DAG

Store “longest known path” for each node

Start node = 0

Max of incoming nodes’ longest known path + 
incoming edge cost

Longest path from start to end is critical path



Critical Path for BBQ
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Latest Completion Time

If you want to procrastinate, compute the latest 
you can finish each job without delaying total time

Set time of end node to critical path time

Set nodes’ latest completion time to:
min of (outgoing node time) - (outgoing edge cost)

(Similar to finding the shortest path to end 
following edges backwards)



All Pairs Shortest Path

Dijkstra’s Algorithm finds shortest paths from one 
node to all other nodes

What about computing shortest paths for all pairs 
of nodes?

We can run Dijkstra’s |V| times. Total cost: 

Floyd-Warshall algorithm is often faster in practice 
(though same asymptotic time)

O(|V |3)



Recursive Motivation

Consider the set of numbered nodes 1 through k

The shortest path between any node i and j using 
only nodes in the set {1, ..., k} is the minimum of

shortest path from i to j using nodes {1, ..., k-1}

shortest path from i to j using node k

path(i,j,k) = min( path(i,j,k-1), 
                          path(i,k,k-1)+ path(k,j,k-1) )



Dynamic Programming

Instead of repeatedly computing recursive calls, 
store lookup table

To compute path(i,j,k) for any i,j, we only need to 
look up path(-,-, k-1)

but never k-2, k-3, etc.

We can incrementally compute the path matrix for 
k=0, then use it to compute for k=1, then k=2...



Floyd-Warshall Code

Initialize d = weight matrix

for (k=0; k<N; k++) 
  for (i=0; i<N; i++) 
    for (j=0; j<N; j++) 
      if (d[i][j] > d[i][k]+d[k][j])
        d[i][j] = d[i][k] + d[k][j];

Additionally, we can store the actual path by 
keeping a “midpoint” matrix



All Pairs Shortest Path 
Example
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All Pairs Shortest Path 
Example
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All Pairs Shortest Path 
Example
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All Pairs Shortest Path 
Example
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All Pairs Shortest Path 
Example
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Transitive Closure

For any nodes i, j, is there a path from i to j? 

Instead of computing shortest paths, just compute 
Boolean if a path exists

path(i,j,k) = path(i,j,k-1) OR 
                   path(i,k,k-1) AND path(k,j,k-1)



Maximum Flow

Consider a graph representing flow capacity

Directed graph with source and sink nodes

Physical analogy: water pipes 

Each edge weight represents the capacity: how 
much “water” can run through the pipe from 
source to sink?



Capacity Example
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Max Flow Algorithm

Create 2 copies of original graph: flow graph and 
residual graph

The flow graph tells us how much flow we have 
currently on each edge

The residual graph tells us how much flow is 
available on each edge

Initially, the residual graph is the original graph



Augmenting Path

Find any path in residual graph from source to sink

called an augmenting path.

The minimum weight along path can be added as 
flow to the flow graph

But we don’t want to commit to this flow; add a 
reverse-direction undo edge to the residual graph
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RESIDUAL FLOW
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Running Times

If integer weights, each augmenting path 
increases flow by at least 1

Costs O(|E|) to find an augmenting path

For max flow    , finding max flow (Floyd-
Fulkerson) costs 

Choosing shortest unweighted path (Edmonds-
Karp), 

f
O(f |E|)

O(|V ||E|2)



Sports Elimination
In many organized sports, teams are split into 
divisions

the team in a division with the most wins at end 
of season earns a divisional title

Fans and writers like to talk about whether a team 
is mathematically eliminated from the division race

The standard formula is often wrong, instead, 
compute a max flow



Standard Formula

If team i has W[i] wins, and R[i] remaining games, 
pretend i wins all of its R[i] games. W[i]+R[i]

Pretend all other teams in division win no more 
games. If W[i]+R[i] > W[j], for all j, i can still win

The problem is the other teams may have games 
against each other; both teams can’t lose



Max Flow Graph
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Max Flow Solution: 
team i
Connect source to all game nodes (team j, team k)

Capacity of edge to game node is # of games btw j and k

Connect game nodes to participating team nodes with 
infinite capacity

Connect team nodes to sink, 
capacity = # of games before team j overtakes team i

Team i can win only if max flow saturates outgoing edges 
from source



Reading

Weiss Section 9.5


