Data Structures and Algorithms

Session 19. April 6, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 4 due by midnight tonight

Homework 5 assigned

Review

- * Topological Sort
- Shortest Path
 - * Unweighted version: Breadth-first search
 - Weighted version: Dijkstra's Algorithm

Today's Plan

- * Extensions of Dijkstra's Algorithm
 - * Critical Path Analysis
 - * All Pairs Shortest Path (Floyd-Warshall)
- Maximum Flow
 - * Floyd-Fulkerson Algorithm

Critical Path Analysis

- * Recall motivational example for topological sort: edges represent dependencies between tasks
- * Consider a similar event-node graph in which nodes represent events and edges represent dependencies and costs
- We want to find the fastest time we can complete all tasks if we can run job in parallel

Critical Path Example

* Convert it to an event-node graph, where edges represent the transition between events

Longest Path in a DAG

- Store "longest known path" for each node
- Start node = 0
- Max of incoming nodes' longest known path + incoming edge cost
- * Longest path from start to end is critical path

Latest Completion Time

- If you want to procrastinate, compute the latest you can finish each job without delaying total time
- * Set time of end node to critical path time
- Set nodes' latest completion time to: min of (outgoing node time) - (outgoing edge cost)
- (Similar to finding the shortest path to end following edges backwards)

All Pairs Shortest Path

- * Dijkstra's Algorithm finds shortest paths from one node to all other nodes
- What about computing shortest paths for all pairs of nodes?
- * We can run Dijkstra's |V| times. Total cost: $O(|V|^3)$
- * Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)

Recursive Motivation

- * Consider the set of numbered nodes 1 through k
- * The shortest path between any node i and j using only nodes in the set {1, ..., k} is the minimum of
 - * shortest path from i to j using nodes {1, ..., k-1}
 - * shortest path from i to j using node k

Dynamic Programming

- Instead of repeatedly computing recursive calls, store lookup table
- * To compute path(i,j,k) for any i,j, we only need to look up path(-,-, k-1)
 - * but never k-2, k-3, etc.
- We can incrementally compute the path matrix for k=0, then use it to compute for k=1, then k=2...

Floyd-Warshall Code

* Initialize d = weight matrix

* Additionally, we can store the actual path by keeping a "midpoint" matrix

	1	2	3	4
1	-	4	Ι	Ι
2	-	I	3	1
3	2	I	I	4
4	-		2	-

K=2

K=3

Transitive Closure

- * For any nodes i, j, is there a path from i to j?
- Instead of computing shortest paths, just compute Boolean if a path exists

Maximum Flow

- * Consider a graph representing flow capacity
- * Directed graph with **source** and **sink** nodes
- * Physical analogy: water pipes
 - * Each edge weight represents the capacity: how much "water" can run through the pipe from source to sink?

Capacity Example

Max Flow Algorithm

- * Create 2 copies of original graph: flow graph and residual graph
 - * The flow graph tells us how much flow we have currently on each edge
 - * The residual graph tells us how much flow is available on each edge
- * Initially, the residual graph is the original graph

Augmenting Path

* Find any path in residual graph from source to sink

- * called an augmenting path.
- * The minimum weight along path can be added as flow to the flow graph
- * But we don't want to commit to this flow; add a reverse-direction undo edge to the residual graph

b

d

Running Times

- If integer weights, each augmenting path increases flow by at least 1
- * Costs O(|E|) to find an augmenting path
- * For max flow f, finding max flow (Floyd-Fulkerson) costs O(f|E|)
- * Choosing shortest unweighted path (Edmonds-Karp), $O(|V||E|^2)$

Sports Elimination

- In many organized sports, teams are split into divisions
 - * the team in a division with the most wins at end of season earns a divisional title
- * Fans and writers like to talk about whether a team is mathematically eliminated from the division race
- * The standard formula is often wrong, instead, compute a max flow

Standard Formula

- If team i has W[i] wins, and R[i] remaining games, pretend i wins all of its R[i] games. W[i]+R[i]
- * Pretend all other teams in division win no more games. If W[i]+R[i] > W[j], for all j, i can still win
- * The problem is the other teams may have games against each other; both teams can't lose

Max Flow Solution: team i

- * Connect source to all game nodes (team j, team k)
 - * Capacity of edge to game node is # of games btw j and k
- Connect game nodes to participating team nodes with infinite capacity
- Connect team nodes to sink, capacity = # of games before team j overtakes team i
- * Team i can win only if max flow saturates outgoing edges from source

Reading

Weiss Section 9.5