Data Structures and Algorithms

Session 18. April 1, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 4 due next class
* Huffman compression must handle any characters in dictionary.txt
** Spell checker can ignore case

Review

** Rehashing

* String hash function example
* Graphs
** Terminology and properties
* Implementation

Today's Plan

* Topological Sort
* Shortest Path
* Unweighted version
* Weighted version

Implementation

** Option 1:

* Store all nodes in an indexed list
* Represent edges with adjacency matrix
* Option 2:
* Explicitly store adjacency lists

Adjacency Matrices

* 2d-array \mathbf{A} of boolean variables
* $A[i][j]$ is true when node \mathbf{i} is adjacent to node \mathbf{j}
** If graph is undirected, A is symmetric

Adjacency Lists

粦 Each node stores references to its neighbors

1	2	3	
2	1	4	
3	1	4	
4	2	3	5
5	4		

Math Notation for Graphs

Set Notation：
＊ $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\}$
＊$v \in V \quad(\mathrm{v}$ is in V$)$
米 $U \cup V$（union）
＊＊$U \cap V$（intersection）
＊$U \subset V$
（ U is a subset of V ）

米 G is the graph
＊ V is set of vertices
娄 E is set of edges
类 $\left(v_{i}, v_{j}\right) \in E$
＊＊$|\mathrm{V}|=\mathrm{N}=$ size of V

Topological Sort

* Problem definition:
** Given a directed acyclic graph G, order the nodes such that for each edge $\left(v_{i}, v_{j}\right) \in E, v_{i}$ is before v_{j} in the ordering.

米 e.g., scheduling errands when some tasks depend on other tasks being completed.

Topological Sort Ex.

Topological Sort Naïve Algorithm

* Degree means \# of edges, indegree means \# of incoming edges
** 1. Compute the indegree of all nodes
* 2. Print any node with indegree 0

米 3. Remove the node we just printed. Go to 1.
粦 Which nodes' indegrees change?

Topological Sort Better Algorithm

* 1. Compute all indegrees
* 2. Put all indegree 0 nodes into a Collection
* 3. Print and remove a node from Collection
* 4. Decrement indegrees of the node's neighbors.
* 5 . If any neighbor has indegree 0 , place in Collection. Go to 3.

Topological Sort Running time

* Initial indegree computation: $\mathrm{O}(|\mathrm{E}|)$
* Unless we update indegree as we build graph
* |V| nodes must be enqueued/dequeued
* Dequeue requires operation for outgoing edges

类 Each edge is used, but never repeated

* Total running time $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Shortest Path

** Given $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, and a node $\mathbf{s} \in \mathbf{V}$, find the shortest (weighted) path from \mathbf{s} to every other vertex in \mathbf{G}.

* Motivating example: subway travel

粦 Nodes are junctions, transfer locations
类 Edge weights are estimated time of travel

Approximate MTA Express Stop Subgraph

* A few inaccuracies (don't use this to plan any trips)

Breadth First Search

* Like a level-order traversal
** Find all adjacent nodes (level 1)
* Find new nodes adjacent to level 1 nodes (level 2)
*... and so on
* We can implement this with a queue

Unweighted Shortest Path Algorithm

* Set node s' distance to 0 and enqueue s.
* Then repeat the following:
* Dequeue node v. For unset neighbor u:
* set neighbor u's distance to v's distance +1
** mark that we reached \mathbf{v} from \mathbf{u}
* * enqueue u

Weighted Shortest Path

* The problem becomes more difficult when edges have different weights
* Weights represent different costs on using that edge

粦 Standard algorithm is Dijkstra's Algorithm

Dijkstra’s Algorithm

* Keep distance overestimates $\mathbf{D}(\mathbf{v})$ for each node \mathbf{v} (all non-source nodes are initially infinite)
* 1. Choose node \mathbf{v} with smallest unknown distance
* 2. Declare that v's shortest distance is known
* 3. Update distance estimates for neighbors

Updating Distances

* For each of \mathbf{v} 's neighbors, w,
** if $\min (\mathbf{D}(\mathbf{v})+$ weight $(\mathbf{v}, \mathbf{w}), \mathbf{D}(\mathbf{w})$)
** i.e., update $\mathbf{D}(\mathbf{w})$ if the path going through \mathbf{v} is cheaper than the best path so far to w

Dijkstra's Algorithm Analysis

米 First, convince ourselves that the algorithm works.

* At each stage, we have a set of nodes whose shortest paths we know
** In the base case, the set is the source node.
粦 Inductive step: if we have a correct set, is greedily adding the shortest neighbor correct?

Proof by Contradiction (Sketch)

** Contradiction: Dijkstra's finds a shortest path to node w through \mathbf{v}, but there exists an even shorter path
** This shorter path must pass from inside our known set to outside.

* Call the $1^{\text {st }}$ node in cheaper path outside our set u

类 The path to u must be shorter than the path to w

* But then we would have chosen u instead

Computational Cost

* Keep a priority queue of all unknown nodes
* Each stage requires a deleteMin, and then some decreaseKeys (the \# of neighbors of node)
* We call decreaseKey once per edge, we call deleteMin once per vertex
** Both operations are $\mathrm{O}(\log |\mathrm{V}|)$
* Total cost: $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|+|\mathrm{V}| \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Reading

* Weiss Section 9.3 (today's material)
* Weiss Section 9.4 (Monday's material)

