Data Structures and Algorithms

Session 18. April 1, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 4 due next class

- * Huffman compression must handle any characters in dictionary.txt
- Spell checker can ignore case

Review

* Rehashing

- String hash function example
- # Graphs
 - * Terminology and properties
 - # Implementation

Today's Plan

- * Topological Sort
- Shortest Path
 - * Unweighted version
 - Weighted version

Implementation

* Option 1:

Store all nodes in an indexed list

* Represent edges with adjacency matrix

* Option 2:

* Explicitly store adjacency lists

Adjacency Matrices

- * 2d-array **A** of boolean variables
- * A[i][j] is true when node i is adjacent to node j

3

2

* If graph is undirected, A is symmetric

	1	2	3	4	5
1	0	1	1	0	0
2	1	0	0	1	0
3	1	0	0	1	0
4	0	1	1	0	1
5	0	0	0	1	0

Adjacency Lists

* Each node stores references to its neighbors

Math Notation for Graphs

- Set Notation:
 - * $v \in V$ (v is in V)
 - * $U \cup V$ (union)
 - * $U \cap V$ (intersection)
 - * $U \subset V$ (U is a subset of V)

- $* G = \{V, E\}$
- * G is the graph
- * V is set of vertices
- * E is set of edges
- |V| = N = size of V

Topological Sort

* Problem definition:

- * Given a directed acyclic graph G, order the nodes such that for each edge $(v_i, v_j) \in E$, v_i is before v_j in the ordering.
- * e.g., scheduling errands when some tasks depend on other tasks being completed.

Topological Sort Naïve Algorithm

- **Degree** means # of edges, indegree means # of incoming edges
- * 1. Compute the **indegree** of all nodes
- * 2. Print any node with indegree 0
- * 3. Remove the node we just printed. Go to 1.
- * Which nodes' indegrees change?

Topological Sort Better Algorithm

- # 1. Compute all indegrees
- * 2. Put all indegree 0 nodes into a Collection
- * 3. Print and remove a node from Collection
- # 4. Decrement indegrees of the node's neighbors.
- * 5. If any neighbor has indegree 0, place in Collection. Go to 3.

							Go to ATM		Fix omputer
				Buy Groceries Cook Dinner	Mai Gr	ook up ecipe online il recipe to andma	Buy Stamps Mail Postcard		Taxes Mail Tax Form
ATM	comp	grocer- ies	recipe	stamps	taxes	cook	grand- ma	post- card	mail taxes

Topological Sort Running time

- * Initial indegree computation: O(|E|)
 - * Unless we update indegree as we build graph
- * |V| nodes must be enqueued/dequeued
- * Dequeue requires operation for outgoing edges
- * Each edge is used, but never repeated
- * Total running time O(|V| + |E|)

Shortest Path

- Given G = (V,E), and a node s ∈ V, find the shortest (weighted) path from s to every other vertex in G.
- Motivating example: subway travel
 - * Nodes are junctions, transfer locations
 - * Edge weights are estimated time of travel

Breadth First Search

- * Like a level-order traversal
- * Find all adjacent nodes (level 1)
- * Find *new* nodes adjacent to level 1 nodes (level 2)
- * ... and so on
- * We can implement this with a queue

Unweighted Shortest Path Algorithm

* Set node s' distance to 0 and enqueue s.

- * Then repeat the following:
 - * Dequeue node **v**. For unset neighbor **u**:
 - * set neighbor u's distance to v's distance +1
 - * mark that we reached v from u

* enqueue **u**

Weighted Shortest Path

- * The problem becomes more difficult when edges have different weights
- Weights represent different costs on using that edge
- Standard algorithm is Dijkstra's Algorithm

Dijkstra's Algorithm

- * Keep distance overestimates D(v) for each node v (all non-source nodes are initially infinite)
- * 1. Choose node **v** with smallest *unknown* distance
- # 2. Declare that v's shortest distance is known
- * 3. Update distance estimates for neighbors

Updating Distances

- * For each of v's neighbors, w,
- # if min(D(v)+ weight(v,w), D(w))
 - * i.e., update D(w) if the path going through v is cheaper than the best path so far to w

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
inf	inf	inf	inf	0
?	?	?	?	home

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
inf	inf	inf	inf	0
?	?	?	?	home

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
inf	6	inf	2	0
?	Penn St.?	?	Penn St.?	home

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
14	6	6	2	0
Times Sq?	Penn St.	Times Sq?	Penn St.	home

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
5+6=11	6	6	2	0
Port Auth?	Penn St.	Times Sq?	Penn St.	home

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
11	6	6	2	0
Port Auth?	Penn St.	Times Sq	Penn St.	home

59 th Broad.	Port Auth.	72 nd Broad	Times Sq.	Penn St.
11	6	6	2	0
Port Auth	Penn St.	Times Sq	Penn St.	home

Dijkstra's Algorithm Analysis

- * First, convince ourselves that the algorithm works.
- * At each stage, we have a set of nodes whose shortest paths we know
- In the base case, the set is the source node.
- Inductive step: if we have a correct set, is greedily adding the shortest neighbor correct?

Proof by Contradiction (Sketch)

- * Contradiction: Dijkstra's finds a shortest path to node w through v, but there exists an even shorter path
- * This shorter path must pass from inside our known set to outside.
- * Call the 1st node in cheaper path outside our set u

- * The path to **u** must be shorter than the path to **w**
 - But then we would have chosen u instead

Computational Cost

- * Keep a priority queue of all unknown nodes
- * Each stage requires a deleteMin, and then some decreaseKeys (the # of neighbors of node)
- We call decreaseKey once per edge, we call deleteMin once per vertex
- * Both operations are O(log |V|)
- * Total cost: $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$

Reading

* Weiss Section 9.3 (today's material)

* Weiss Section 9.4 (Monday's material)