Data Structures and Algorithms

Session 16. March 25, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 4 up on website
* Hw3 grades coming tomorrow
* Thanks for feedback on midterm evaluations
** I have old hw's and midterms in my office; stop by after class or let's set up a time for pickup

Review

* Midterm Solutions
** Huffman Coding Trees
米 Create forest of all characters weighted by frequency
** Merge least weight trees until 1 tree left
* (Unfinished) proof sketch of optimality

Today's Plan

* Finish Huffman optimality proof sketch
* Hash Tables ADT
* Definition and Implementation

Huffman Details

* We can manage the forest with a priority queue:
* buildHeap first,
* find the least weight trees with 2 deleteMins, * after merging, insert back to heap.
* In practice, also have to store coding tree, but the payoff comes when we compress larger strings

Optimality of Huffman

粦 Induction: Suppose Huffman tree is optimal for \mathbf{N} characters. What about $\mathbf{N + 1}$ characters?

* Lemma 1: Optimal tree is full
* Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree
* Lemma 3: Swapping characters at same depth doesn't affect optimality

Optimality of Huffman

** Induction: Suppose Huffman tree is optimal for \mathbf{N} characters. What about $\mathbf{N + 1}$ characters?
** Lemma 1: Optimal tree is full
對 Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree

* Lemma 3: Swapping characters at same depth doesn't affect optimality
* Lemma 4: An optimal tree exists where the least frequent characters are siblings at deepest level.

Optimality of Huffman

米 number of bits of an encoding is $B(T)=\sum_{i=1}^{N+1} F_{i} D_{i}$

* F is the frequency of the character, D is the depth in the tree (the number of bits)
* Create new tree T* by removing least frequent chars and replacing with a meta-character whose frequency is the frequency of both chars,
** meta-character is one level less deep

Optimality of Huffman

** $B(T)=B(T *)+F_{1}+F_{2}$

* Proof by contradiction: Assume there is a different tree T^{\prime} that is better than T

$$
\begin{aligned}
B\left(T^{\prime}\right) & <B(T) \\
B\left(T^{\prime} *\right)+F_{1}+F_{2} & <B(T *)+F_{1}+F_{2} \\
B\left(T^{\prime} *\right) & <B(T *)
\end{aligned}
$$

* That is a contradiction because T^{*} has N characters, which means Huffman is optimal via our inductive hypothesis

Optimality of Huffman

米 Assuming falseness of inductive step produced contradiction to inductive hypothesis

米 Therefore，if Huffman codes are optimal for \mathbf{N} characters，they are also for $\mathbf{N + 1}$ characters
＊＊Huffman is obviously optimal for 2 characters
米 Huffman codes are optimal

Hash Table ADT

* Search tree:
findMin, findMax, insert/delete, search
* Priority Queue:
findMin (or max), insert/delete, no search
* Hash Table:
insert/delete, search

Hash Table ADT

* Search tree:

Stores complete order information

* Priority Queue:

Stores incomplete order information

* Hash Table:

Stores no order information

Hash Table ADT

* Insert or delete objects by key
* Search for objects by key
** No order information whatsoever
* Ideally O(1) per operation

Implementation

* Suppose we have keys between 1 and K
* Create an array with maxKey entries
* Insert, delete, search are just array operations

1	2	3	4	5	6	\cdots	K-3	K-2	K-1	K

* Obviously too expensive

Hash Functions

* A hash function maps any key to a valid array position
** Array positions range from 0 to $\mathrm{N}-1$
* Key range possibly unlimited

Hash Functions

* For integer keys, (key mod N) is the simplest hash function

粦 In general, any function that maps from the space of keys to the space of array indices is valid

* but a good hash function spreads the data out evenly in the array;
* A good hash function avoids collisions

Collisions

* A collision is when two distinct keys map to the same array index
* e.g., $h(x)=x \bmod 5$

$$
h(7)=2, h(12)=2
$$

* Choose $\mathrm{h}(\mathrm{x})$ to minimize collisions, but collisions are inevitable
** To implement a hash table, we must decide on collision resolution policy

Collision Resolution

类 Two basic strategies

* Strategy 1: Separate Chaining
* Strategy 2: Probing; lots of variants

Strategy 1: Separate Chaining

* Keep a list at each array entry

米 Insert(x): find $\mathrm{h}(\mathrm{x})$, add to list at $\mathrm{h}(\mathrm{x})$
** Delete (x) : find $h(x)$, search list at $h(x)$ for x, delete

* Search (x) : find $\mathrm{h}(\mathrm{x})$, search list at $\mathrm{h}(\mathrm{x})$
** We could use a BST or other ADT, but if $h(x)$ is a good hash function, it won't be worth the overhead

Separate Chaining Average Case

粦 Load Factor $\lambda=$ \# objects / TableSize

* Average list length is λ
* Time to insert $=$ constant, or constant $+\lambda$
* Time to search $=$ constant $+\lambda$ or constant $+\lambda / 2$

Strategy 1: Advantages and Disadvantages

* Advantages:

粦 Simple idea

* Removals are clean *
* Disadvantages:
* Need $2^{\text {nd }}$ data structure, which causes extra overhead if the hash function is good

Strategy 2: Probing

* If $h(x)$ is occupied, $\operatorname{try} \mathbf{h}(\mathbf{x})+\mathrm{f}(\mathrm{i}) \bmod \mathbf{N}$ for $i=1$ until an empty slot is found
* Many ways to choose a good $f(\mathrm{i})$
* Simplest method: Linear Probing
* $f(i)=i$

Linear Probing Example

* $\mathrm{N}=5$

米 $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 5$

* insert 7

* insert 12
* insert 2

Primary Clustering

* If there are many collisions, blocks of occupied cells form: primary clustering
* Any hash value inside the cluster adds to the end of that cluster

粦 (a) it becomes more likely that the next hash value will collide with the cluster, and (b) collisions in the cluster get more expensive

Removals

* How do we delete when probing?
* Lazy-deletion: mark as deleted,
* we can overwrite it if inserting,
* but we know to keep looking if searching.

Quadratic Probing

* $f(i)=i \wedge 2$
* Avoids primary clustering
* Sometimes will never find an empty slot even if table isn't full!
** Luckily, if load factor $\lambda \leq \frac{1}{2}$, guaranteed to find empty slot

Quadratic Probing Example

* $\mathrm{N}=7$

米 $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 7$

* insert 9

* insert 16
* insert 2

Double Hashing

** If $h_{1}(x)$ is occupied, probe according to

$$
f(i)=i \times h_{2}(x)
$$

* $2^{\text {nd }}$ hash function must never map to 0
** Increments differently depending on the key

Double Hashing Example

* $\mathrm{N}=7$

4 $\mathrm{h} 1(\mathrm{x})=\mathrm{x} \bmod 7, \mathrm{~h} 2(\mathrm{x})=5-\mathrm{x} \bmod 5$

* insert 9

* insert 16
* insert 2

Reading

* Homework 4
* Weiss Ch. 5

