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Announcements

Homework 4 up on website

Hw3 grades coming tomorrow

Thanks for feedback on midterm evaluations

I have old hw’s and midterms in my office; 
stop by after class or let’s set up a time for 
pickup



Review

Midterm Solutions

Huffman Coding Trees

Create forest of all characters weighted by 
frequency

Merge least weight trees until 1 tree left

(Unfinished) proof sketch of optimality



Today’s Plan

Finish Huffman optimality proof sketch

Hash Tables ADT

Definition and Implementation



Huffman Details

We can manage the forest with a priority queue:

buildHeap first, 

find the least weight trees with 2 deleteMins,

after merging, insert back to heap.

In practice, also have to store coding tree, but the 
payoff comes when we compress larger strings 



Optimality of Huffman

Induction: Suppose Huffman tree is optimal for N 
characters. What about N+1 characters? 

Lemma 1: Optimal tree is full

Lemma 2: the 2 least frequent characters are at 
the deepest level in optimal tree

Lemma 3: Swapping characters at same depth 
doesn’t affect optimality



Optimality of Huffman
Induction: Suppose Huffman tree is optimal for N 
characters. What about N+1 characters? 

Lemma 1: Optimal tree is full

Lemma 2: the 2 least frequent characters are at 
the deepest level in optimal tree

Lemma 3: Swapping characters at same depth 
doesn’t affect optimality

Lemma 4: An optimal tree exists where the least 
frequent characters are siblings at deepest level.



Optimality of Huffman

number of bits of an encoding is 

F is the frequency of the character, D is the depth 
in the tree (the number of bits)

Create new tree T* by removing least frequent 
chars and replacing with a meta-character whose 
frequency is the frequency of both chars,

meta-character is one level less deep

B(T ) =
N+1∑

i=1

FiDi



Optimality of Huffman

   

Proof by contradiction: Assume there is a different 
tree T’ that is better than T

That is a contradiction because T* has N 
characters, which means Huffman is optimal via 
our inductive hypothesis

B(T ) = B(T∗) + F1 + F2

B(T ′) < B(T )
B(T ′∗) + F1 + F2 < B(T∗) + F1 + F2

B(T ′∗) < B(T∗)



Optimality of Huffman

Assuming falseness of inductive step produced 
contradiction to inductive hypothesis

Therefore, if Huffman codes are optimal for N 
characters, they are also for N+1 characters

Huffman is obviously optimal for 2 characters

Huffman codes are optimal 



Hash Table ADT

Search tree: 
findMin, findMax, insert/delete, search

Priority Queue:
findMin (or max), insert/delete, no search

Hash Table:
insert/delete, search



Hash Table ADT

Search tree: 
Stores complete order information

Priority Queue:
Stores incomplete order information

Hash Table:
Stores no order information



Hash Table ADT

Insert or delete objects by key

Search for objects by key

No order information whatsoever

Ideally O(1) per operation



Implementation

Suppose we have keys between 1 and K

Create an array with maxKey entries

Insert, delete, search are just array operations

Obviously too expensive

1 2 3 4 5 6 ... K-3 K-2 K-1 K



Hash Functions

A hash function maps any key to a valid array 
position

Array positions range from 0 to N-1

Key range possibly unlimited

1 2 3 4 5 6 ... K-3 K-2 K-1 K

0 1 ... N-2 N-1



Hash Functions

For integer keys, (key mod N) is the simplest hash 
function

In general, any function that maps from the space 
of keys to the space of array indices is valid

but a good hash function spreads the data out 
evenly in the array;

A good hash function avoids collisions



Collisions
A collision is when two distinct keys map to the 
same array index

e.g., h(x) = x mod 5
        h(7) = 2,  h(12) = 2

Choose h(x) to minimize collisions, but collisions 
are inevitable

To implement a hash table, we must decide on 
collision resolution policy



Collision Resolution

Two basic strategies

Strategy 1: Separate Chaining

Strategy 2: Probing; lots of variants



Strategy 1: 
Separate Chaining
Keep a list at each array entry

Insert(x): find h(x), add to list at h(x)

Delete(x): find h(x), search list at h(x) for x, delete

Search(x): find h(x), search list at h(x)

We could use a BST or other ADT, but if h(x) is a 
good hash function, it won’t be worth the 
overhead



Separate Chaining 
Average Case

Load Factor        = # objects / TableSize

Average list length is       

Time to insert = constant, or constant +      

Time to search = constant +     or constant + 

λ

λ

λ

λ λ/2



Strategy 1: Advantages 
and Disadvantages
Advantages:

Simple idea

Removals are clean *

Disadvantages:

Need 2nd data structure, which causes extra 
overhead if the hash function is good



Strategy 2: Probing

If h(x) is occupied, try  h(x)+f(i) mod N 
for i = 1 until an empty slot is found

Many ways to choose a good f(i)

Simplest method: Linear Probing

f(i) = i



Linear Probing Example

N = 5

h(x) = x mod 5

insert 7

insert 12

insert 2

7

7 12

7 12 2



Primary Clustering

If there are many collisions, blocks of occupied 
cells form: primary clustering

Any hash value inside the cluster adds to the end 
of that cluster

(a) it becomes more likely that the next hash value 
will collide with the cluster, and (b) collisions in the 
cluster get more expensive



Removals

How do we delete when probing?

Lazy-deletion: mark as deleted, 

we can overwrite it if inserting,

but we know to keep looking if searching.



Quadratic Probing

f(i) = i^2

Avoids primary clustering

Sometimes will never find an empty slot even if 
table isn’t full!

Luckily, if load factor             ,  guaranteed to find 
empty slot

λ ≤ 1
2



Quadratic Probing 
Example

N = 7

h(x) = x mod 7

insert 9

insert 16

insert 2

9

9 16

9 16 2



Double Hashing

If            is occupied, probe according to 

2nd hash function must  never map to 0

Increments differently depending on the key

f(i) = i× h2(x)
h1(x)



Double Hashing 
Example

N = 7

h1(x) = x mod 7,   h2(x) = 5-x mod 5

insert 9

insert 16

insert 2

9

9 16

7 2 16



Reading

Homework 4

Weiss Ch. 5


