Data Structures and
Algorithms

Session 16. March 25, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 4 up on website
* Hw3 grades coming tomorrow
* Thanks for feedback on midterm evaluations

* | have old hw’s and midterms in my office;
stop by after class or let’s set up a time for
pickup




Review

* Midterm Solutions
* Huffman Coding Trees

* Create forest of all characters weighted by
frequency

* Merge least weight trees until 1 tree left

* (Unfinished) proof sketch of optimality




loday’s Plan

* Finish Huffman optimality proof sketch
* Hash Tables ADT

* Definition and Implementation




Hutfman Detalls

* We can manage the forest with a priority queue:
* buildHeap first,
* find the least weight trees with 2 deleteMins,
* after merging, insert back to heap.

* In practice, also have to store coding tree, but the
payoff comes when we compress larger strings




Optimality of Huffman

* Induction: Suppose Huffman tree is optimal for N
characters. What about N+1 characters?

* Lemma 1: Optimal tree is full

* Lemma 2: the 2 least frequent characters are at
the deepest level in optimal tree

* Lemma 3: Swapping characters at same depth
doesn’t affect optimality




Optimality of Huffman

* Induction: Suppose Huffman tree is optimal for N
characters. What about N+1 characters?

* Lemma 1: Optimal tree is full

* Lemma 2: the 2 least frequent characters are at
the deepest level in optimal tree

* Lemma 3: Swapping characters at same depth
doesn’t affect optimality

* Lemma 4. An optimal tree exists where the least
frequent characters are siblings at deepest level.




Optimality of Huffman

N+1
* number of bits of an encoding is B(T) = » ~ F,D;
1=1

* F is the frequency of the character, D is the depth
in the tree (the number of bits)

* Create new tree T* by removing least frequent
chars and replacing with a meta-character whose
frequency is the frequency of both chars,

* meta-character is one level less deep




Optimality of Huffman

* B(T)= B(Tx)+ F; + I
* Proof by contradiction: Assume there is a different
tree T’ that is better than T
B(T") < B(T)
B(T'x)+ F1+ F», < B(Tx)+ F1+ Fy
B(T'x) < B(Tx)
* That is a contradiction because T* has N

characters, which means Huffman is optimal via
our inductive hypothesis




Optimality of Huffman

* Assuming falseness of inductive step produced
contradiction to inductive hypothesis

* Therefore, if Huffman codes are optimal for N
characters, they are also for N+1 characters

* Huffman is obviously optimal for 2 characters

* Huffman codes are optimal




Hash Table ADT

* Search tree:
findMin, findMax, insert/delete, search

* Priority Queue:
findMin (or max), insert/delete, no search

* Hash Table:
insert/delete, search




Hash Table ADT

* Search tree:
Stores complete order information

* Priority Queue:
Stores incomplete order information

% Hash Table:
Stores no order information




Hash Table ADT

* Insert or delete objects by key
* Search for objects by key

% No order information whatsoever

* ldeally O(1) per operation




Implementation

* Suppose we have keys between 1 and K

* Create an array with maxKey entries

* Insert, delete, search are just array operations

1

2 3 4 5 6

K-3

K-2

K-1

* Obviously too expensive




Hash Functions

* A hash function maps any key to a valid array

position

* Array positions range from 0 to N-1

* Key range possibly unlimited

K-3

K-2

K-1

N-1




Hash Functions

* For integer keys, (key mod N) is the simplest hash
function

* In general, any function that maps from the space
of keys to the space of array indices is valid

* but a good hash function spreads the data out
evenly in the array;

* A good hash function avoids collisions




Collisions

* A collision is when two distinct keys map to the
same array index

* e.g., h(x) = x mod 5
h(7) =2, h(12) =2

* Choose h(x) to minimize collisions, but collisions
are inevitable

* To implement a hash table, we must decide on
collision resolution policy




Collision Resolution

* Two basic strategies
* Strategy 1: Separate Chaining

* Strategy 2: Probing; lots of variants




Strategy 1
Separate Chaining

* Keep a list at each array entry
* Insert(x): find h(x), add to list at h(x)
* Delete(x): find h(x), search list at h(x) for x, delete
* Search(x): find h(x), search list at h(x)

* We could use a BST or other ADT, but if h(x) is a
good hash function, it won’t be worth the
overhead




Separate Chaining
Average Case

* Load Factor )\ = # objects / TableSize
* Average list length is A
¥ Time to insert = constant, or constant + )\

% Time to search = constant +)\ or constant + \/2




Strategy 1: Advantages
and Disadvantages

* Advantages:

* Simple idea

* Removals are clean *
* Disadvantages:

* Need 2Md data structure, which causes extra
overhead if the hash function is good




Strategy 2: Probing

* If h(x) is occupied, try h(x)+f(i) mod N
for i = 1 until an empty slot is found

* Many ways to choose a good f(i)
* Simplest method: Linear Probing

* () = i




Linear Probing Example

*N=25

* h(x) =xmod 5

* Insert 7 7

* insert 12 7 12

* Insert 2 7 12 2




Primary Clustering

* |f there are many collisions, blocks of occupied
cells form: primary clustering

* Any hash value inside the cluster adds to the end
of that cluster

* (a) it becomes more likely that the next hash value
will collide with the cluster, and (b) collisions in the
cluster get more expensive




Removals

* How do we delete when probing?

* Lazy-deletion: mark as deleted,
* we can overwrite it if inserting,

* but we know to keep looking if searching.




Quadratic Probing

* (i) = iN2
* Avoids primary clustering

* Sometimes will never find an empty slot even if
table isn’t full!

, guaranteed to find

1
% Luckily, if load factor A < 5

empty slot




Quadratic Probing

Example

¥N=7

* h(x) = x mod 7
* insert 9

* insert 16

* Insert 2

16

16




Double Hashing

¥ If hi(x) is occupied, probe according to

f(i) =i X ho(x)

% 2nd hash function must never map to 0

* Increments differently depending on the key




Double Hashing
Example

*N=7

¥ h1(x) =xmod 7, h2(x) =5-xmod 5

¥ Insert 9 9
* Insert 16 9 16
* Insert 2 7 16




Reading

* Homework 4

¥ Weiss Ch. 5




