Data Structures and Algorithms

Session 15. March 23, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 4 up on website
* New GraphDraw.java, should fix Concurrency Exceptions
* Homework 3 solutions up

Today's Plan

* Midterm Solutions
** Huffman Coding Trees
* Data compression method

Midterm
Raw Score

* Scaling formula: $100 *(x+30) / 130$

Huffman Codes

* Basic lossless data compression
* General purpose codes are fixed length:
* e.g., ASCII character code is 7 bits ' a ' is 7 bits, '!' is 7 bits, ' \sim ' is 7 bits
* Strategy: encode more common characters with shorter codes

Example

* "a man a plan a canal panama"
* 7 characters: a m n plc (space)
* We can use 3 bits to create a unique code for each

a	m	n	p	I	c	space
000	001	010	011	100	101	110

* Resulting encoding is $27^{*} 3=81$ bits: 000110001000010110000110011100000010110000110101000 010000100110011000010000001000

Tree Representation

* We can think of binary codes as binary tries
* Each node can have a 0 (left) or a 1 child (right)

Huffman's Algorithm

* Compute character frequencies: a 10, m 2, n 4, p 2, c 1, I 2, (space) 6
* Create forest of 1-node trees for all the characters.
* Let the weight of the trees be the sum of the frequencies of its leaves
* Repeat until forest is a single tree: Merge the two trees with minimum weight. Merging sums the weights.

Example

Example

Example

Example

Example

Example

Example

Resulting Code

a	m	n	p	l	c	space
0	1000	110	1110	1001	1111	101

* "a man a plan a canal panama"

0101100001101010101111010010110101 0101111101100100110111100110010000
** 68 bits

Huffman Details

* We can manage the forest with a priority queue:

类 buildHeap first,
粦 find the least weight trees with 2 deleteMins, * after merging, insert back to heap.

* In practice, also have to store coding tree, but the payoff comes when we compress larger strings

Optimality of Huffman

* Induction: Suppose Huffman tree is optimal for \mathbf{N} characters. What about $\mathbf{N + 1}$ characters?
* Lemma 1: Optimal tree is full
* Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree
* Lemma 3: Swapping characters at same depth doesn't affect optimality

Optimality of Huffman

粦 Induction: Suppose Huffman tree is optimal for \mathbf{N} characters. What about N+1 characters?

* Lemma 1: Optimal tree is full
* Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree
* Lemma 3: Swapping characters at same depth doesn't affect optimality
* Lemma 4: An optimal tree exists where the least frequent characters are siblings at deepest level.

Optimality of Huffman

** number of bits of an encoding is $B(T)=\sum_{i=1}^{N+1} F_{i} D_{i}$

* F is the frequency of the character, D is the depth in the tree (the number of bits)
* Create new tree T^{*} by removing least frequent chars and replacing with a meta-character whose frequency is the frequency of both chars,
* meta-character is one level less deep

Optimality of Huffman

** $B(T)=B(T *)+F_{1}+F_{2}$

* Proof by contradiction: Assume there is a different tree T^{\prime} that is better than T

$$
\begin{aligned}
B\left(T^{\prime}\right) & <B(T) \\
B\left(T^{\prime} *\right)+F_{1}+F_{2} & <B(T *)+F_{1}+F_{2} \\
B\left(T^{\prime} *\right) & <B(T *)
\end{aligned}
$$

* That is a contradiction because T^{*} has N characters, which means Huffman is optimal via our inductive hypothesis

Optimality of Huffman

* Assuming falseness of inductive step produced contradiction to inductive hypothesis
* Therefore, if Huffman codes are optimal for \mathbf{N} characters, they are also for $\mathbf{N + 1}$ characters
* Huffman is obviously optimal for 2 characters
* Huffman codes are optimal
\square

Reading

* Homework 4
* Weiss 10.1.2

