Data Structures and Algorithms Session 15. March 23, 2009 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 4 up on website

- * New GraphDraw.java, should fix Concurrency Exceptions
- * Homework 3 solutions up

Today's Plan

- * Midterm Solutions
- * Huffman Coding Trees
 - * Data compression method

Huffman Codes

* Basic lossless data compression

* General purpose codes are fixed length:

* e.g., ASCII character code is 7 bits 'a' is 7 bits, '!' is 7 bits, '~' is 7 bits

Strategy: encode more common characters with shorter codes

* "a man a plan a canal panama"

7 characters: a m n p l c (space)

* We can use 3 bits to create a unique code for each

а	m	n	р		С	space
000	001	010	011	100	101	110

Tree Representation

We can think of binary codes as binary tries
Each node can have a 0 (left) or a 1 child (right)

C

a

m

n

(space)

Huffman's Algorithm

* Compute character frequencies: a 10, m 2, n 4, p 2, c 1, I 2, (space) 6

* Create forest of 1-node trees for all the characters.

* Let the weight of the trees be the sum of the frequencies of its leaves

Repeat until forest is a single tree:
 Merge the two trees with minimum weight.
 Merging sums the weights.

Resulting Code

а	m	n	р		С	space
0	1000	110	1110	1001	1111	101

*** 68 bits**

Huffman Details

- We can manage the forest with a priority queue:**buildHeap** first,
 - * find the least weight trees with 2 deleteMins,
 - * after merging, insert back to heap.
- In practice, also have to store coding tree, but the payoff comes when we compress larger strings

Induction: Suppose Huffman tree is optimal for N characters. What about N+1 characters?

* Lemma 1: Optimal tree is full

* Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree

* Lemma 3: Swapping characters at same depth doesn't affect optimality

- * Induction: Suppose Huffman tree is optimal for N characters. What about N+1 characters?
 - * Lemma 1: Optimal tree is full
 - * Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree
 - * Lemma 3: Swapping characters at same depth doesn't affect optimality
- * Lemma 4: An optimal tree exists where the least frequent characters are siblings at deepest level.

* number of bits of an encoding is B(T) = \$\sum_{i=1} F_i D_i\$
* F is the frequency of the character, D is the depth in the tree (the number of bits)

N+1

* Create new tree T* by removing least frequent chars and replacing with a meta-character whose frequency is the frequency of both chars,

* meta-character is one level less deep

* $B(T) = B(T*) + F_1 + F_2$

* Proof by contradiction: Assume there is a different tree T' that is better than T

B(T') < B(T) $B(T'*) + F_1 + F_2 < B(T*) + F_1 + F_2$ B(T'*) < B(T*)

* That is a contradiction because T* has N characters, which means Huffman is optimal via our inductive hypothesis

- * Assuming falseness of inductive step produced contradiction to inductive hypothesis
- * Therefore, if Huffman codes are optimal for N characters, they are also for N+1 characters
- # Huffman is obviously optimal for 2 characters
- # Huffman codes are optimal

Reading

* Homework 4* Weiss 10.1.2