
Data Structures and
Algorithms
Session 14. March 9, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 3 is due

Solutions 1 hour after class

Course Evaluation

Midterm Exam March 11th

Review

Clarification about isomorphism

buildHeap example

HeapSort and HeapSelect

Math Background:
Exponents

XAXB = XA+B

XA

XB
= XA−B

(
XA

)B
= XAB

XN + XN = 2XN != X2N

2N + 2N = 2N+1

Math Background:
Logarithms

XA = B iff logX B = A

logA B =
logC B

logC A
; A, B,C > 0, A != 1

log AB = log A + log B; A, B > 0

Math Background:
Series

N∑

i=0

2i = 2N+1 − 1

N∑

i=0

Ai =
AN+1 − 1

A− 1
N∑

i=1

i =
N(N + 1)

2
! N2

2

N∑

i=1

i2 =
N(N + 1)(2N + 1)

6
≈ N3

3

Big-Oh Notation

We adopt special notation to define upper
bounds and lower bounds on functions

In CS, usually the functions we are bounding are
running times, memory requirements.

We will refer to the running time as T(N)

Definitions

T (N) = O(f(N))← T (N) ≤ cf(N)

T (N) = Ω(g(N))← T (N) ≥ cf(N)

T (N) = Θ(h(N))← T (N) = O(h(N)),
T (N) = Ω(h(N))

For N greater than some constant, we have the
following definitions:

There exists some constant c such that cf(N)
bounds T(N)

Definitions

Alternately, O(f(N)) can be thought of as meaning

Big-Oh notation is also referred to as asymptotic
analysis, for this reason.

T (N) = O(f(N))← lim
N→∞

f(N) ≥ lim
N→∞

T (N)

Comparing Growth
Rates
T1(N) = O(f(N)) and T2(N) = O(g(N))

then
(a) T1(N) + T2(N) = O(f(N) + g(N))
(b) T1(N)T2(N) = O(f(N)g(N))

If you have to, use l’Hôpital’s rule

lim
N→∞

f(N)/g(N) = lim
N→∞

f ′(N)/g′(N)

Abstract Data Types

Defined by:

What information it stores

How the information is organized

How the information can be accessed

Doesn’t specify implementation

Tradeoffs
insert remove lookup index

ArrayList

LinkedList

Stack/Queue

BST

AVL

O(N) O(N) O(N) O(1)

O(1) O(1) O(N) O(N)

O(1) O(1) N/A N/A

O(d)=O(N) O(d)=O(N) O(d)=O(N) N/A

O(log N) O(log N) O(log N) N/A

There may not be free lunch, but sometimes
there’s a cheaper lunch

Abstract Data Type:
Lists
An ordered series of objects

Each object has a previous and next

Except first has no previous, last has no next

We can insert an object to a list (at location k)

We can remove an object from a list

We can read an object from a list (location k)

Array Implementation of
Lists
1st Hurdle: arrays have sizes

Create bigger array when we run out of space,
copy old array to big array

2nd Hurdle: Inserting object anywhere but the end

Shift all entries forward one. O(N)

Get kth and insertion to end constant time O(1)

Linked Lists vs.
Array Lists
Linked Lists

No additional penalty
on size

Insert/remove O(1)*

get kth costs O(N)*

Need some extra
memory for links

Array Lists

Need to estimate
size/grow array

Insert/remove O(N)*

get kth costs O(1)

Arrays are compact
in memory

Stack Definition

Essentially a very restricted List

Two (main) operations:

Push(AnyType x)

Pop(AnyType x)

Analogy – Cafeteria Trays, PEZ

Stack Implementations

Linked List:

Push(x) <-> add(x,0)

Pop(x) <-> remove(0)

Array:

Push(x) <-> Array[k++] = x

Pop(x) <-> return Array[--k]

Queues

Stacks are Last In First Out

Queues are First In First Out, first-come first-
served

Operations: enqueue and dequeue

Queue Implementation

Linked List

add(x,0) to enqueue, remove(N-1) to dequeue

Array List won’t work well!

add(x,0) is expensive

Solution: use a circular array

Circular Array Queue

Don’t bother shifting after removing from array list

Keep track of start and end of queue

When run out of space, wrap around

modular arithmetic

When array is full, increase size using list tactic

Trees

Extension of Linked List structure:

Each node connects to multiple nodes

Examples include file systems, Java class
hierarchies

Tree Terminology

Just like Lists, Trees are collections of nodes

Conceptualize trees upside down (like family trees)

the top node is the root

nodes are connected by edges

edges define parent and child nodes

nodes with no children are called leaves

More Tree Terminology

Nodes that share the same parent are siblings

A path is a sequence of nodes such that the next
node in the sequence is a child of the previous

a node’s depth is the length of the path from root

the height of a tree is the maximum depth

if a path exists between two nodes, one is an
ancestor and the other is a descendant

Tree Traversals

Suppose we want to print all the nodes in a tree

What order should we visit the nodes?

Preorder - read the parent before its children

Postorder - read the parent after its children

Preorder vs. Postorder

preorder(node x)
 print(x)
 for child : Children
 preorder(child)

postorder(node x)
 for child : Children
 postorder(child)
 print(x)

Binary Trees

Nodes can only have two children:

left child and right child

Simplifies implementation and logic

Provides new inorder traversal

Inorder Traversal

Read left child, then parent, then right child

Essentially scans whole tree from left to right

inorder(node x)
 inorder(x.left)
 print(x)
 inorder(x.right)

Binary Tree Properties

A binary tree is full if each node has 2 or 0 children

A binary tree is perfect if it is full and each leaf is
at the same depth

That depth is O(log N)

Search (Tree) ADT

ADT that allows insertion, removal, and searching
by key

A key is a value that can be compared

In Java, we use the Comparable interface

Comparison must obey transitive property

Notice that the Search ADT doesn’t use any index

Inserting into a BST
insert(x) calls insert(x,root)

Recursive concept:

insert(x,t)
 if (x > t.key)
 insert(x, t.right)
 elseif (x < t.key)
 insert(x, t.left)

Actual code needs to manage links/null etc

Searching a BST

findMin(t)
 if (t.left == null) return t.key
 else return findMin(t.left)

contains(x,t)
 if (t == null) return false
 if (x == t.key) return true
 if (x > t.key), then return contains(x, t.right)
 if (x < t.key), then return contains(x, t.left)

Deleting from a BST

Removing a leaf is easy, removing a node with one
child is also easy

Nodes with no grandchildren are easy

Nodes with both children and grandchildren need
more thought

Why can’t we replace the removed node with
either of its children?

A Removal Strategy

First, find node to be removed, t

Replace with the smallest node from the right
subtree

a = findMin(t.right);
t.key = a.key;

Then delete original smallest node in right subtree
remove(a.key, t.right)

AVL Trees

Motivation: want height of tree to be close to log N

AVL Tree Property:
For each node, all keys in its left subtree are less
than the node’s and all keys in its right subtree are
greater. Furthermore, the height of the left and
right subtrees differ by at most 1

AVL Tree Visual

+- +-

Tree Rotations

To balance the tree after an insertion violates the
AVL property,

rearrange the tree; make a new node the root.

This rearrangement is called a rotation.

There are 2 types of rotations.

AVL Tree Visual:
Before insert

b

a

3

1 2

AVL Tree Visual:
After insert

b

a

3

1
2

AVL Tree Visual:
Single Rotation

b

a

31 2

AVL Tree
Single Rotation

Works when new node is added to outer subtree
(left-left or right-right)

What about inner subtrees? (left-right or right-left)

AVL Tree Visual:
Before Insert 2

b

a

1

c

2 3

4

AVL Tree Visual:
After Insert 2

b

a

1

c

3

2

4

AVL Tree Visual:
Single Rotation Fails

b

a

1
c

3

2

4

AVL Tree Visual:
Double Rotation

b

a

1

c

3

2

4

AVL Tree Visual:
Double Rotation

b

a

1

c

3

2

4

AVL Tree Visual:
Double Rotation

ba

1

c

2 4

3

Splay Trees

Like AVL trees, use the standard binary search tree
property

After any operation on a node, make that node the
new root of the tree

Make the node the root by repeating one of two
moves that make the tree more spread out

Easy cases

If node is root, do nothing

If node is child of root, do single AVL rotation

Otherwise, node has a grandparent, and there are
two cases

Case 1: zig-zag

Use when the node is the right child of a left child
(or left-right)

Double rotate, just like AVL tree

a

b

c
w

x y

z
ab

c

w x y z

Case 2: zig-zig

Use when node is the right-right child (or left-left)

Reverse the order of grandparent->parent->node

Make it node->parent->grandparent

a

b

c y

w x

z

a

b

c

y

w

x

z

Priority Queues

New abstract data type Priority Queue:

Insert: add node with key

deleteMin: delete the node with smallest key

(increase/decrease priority)

Heap Implementation

Priority queues are most commonly implemented
using Binary Heaps

Binary tree with special properties

Heap Structure Property: all nodes are full,
(except possibly one at the bottom level)

Heap Order Property: any node is smaller than its
children

Array Implementation

A full tree is regular: we can easily store in an array

Root at A[1]

Root’s children at A[2], A[3]

Node i has children at 2i and (2i+1)

Parent at floor(i/2)

No links necessary, so faster (in most languages)

Insert

To insert key X, create a hole in bottom level

Percolate up

Is hole’s parent is less than X

If so, put X in hole, heap order satisfied

If not, swap hole and parent and repeat

DeleteMin

Save root node, and delete, creating a hole

Take the last element in the heap X

Percolate down:

Check if X is less than hole’s children

if so, we’re done

if not, swap hole and smallest child and repeat

Building a Heap from an
Array
How do we construct a binary heap from an array?

Simple solution: insert each entry one at a time

Each insert is worst case O(log N), so creating a
heap in this way is O(N log N)

Instead, we can jam the entries into a full binary
tree and run percolateDown intelligently

buildHeap

Start at deepest non-leaf node

in array, this is node N/2

percolateDown on all nodes in reverse level-order

for i = N/2 to 1
 percolateDown(i)

