
Data Structures and
Algorithms
Session 12. March 2, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 3 is out. Due 3/9

Sample midterm problems on Courseworks

Midterm review March 9th

Midterm Exam March 11th

No work during break

Review

Note about Young Tableaux *

Visualization of Splay Trees

Tries

Definition of Priority Queues

Heap implementation

Today’s Plan

Solving the Young Tableaux Recurrences

buildHeap description and analysis

HW2 solutions

Young Tableaux

Analysis of recursive solution to HW1’s sorted 2d
array problem is related to MergeSort and
buildHeap

MergeSort splits array into two subproblems,
linear cost to merge

We’ll look at buildHeap later in today’s class

Young Tableaux

Using simple linear search, the running time is

T (N) = 2T (N/2) + cN

=
log N∑

i=0

2ic
N

2i

=
log N∑

i=0

cN

= cN log N

Young Tableaux with
Binary Search
Using binary search, the running time is:

Let h = log N

T (2h) =
h∑

i=0

2i (h− i)

T (N) = 2T (N/2) + log N =
log N∑

i=0

2ic log
N

2i

=
log N∑

i=0

2i
(
log N − log 2i

)
=

log N∑

i=0

2i (log N − i)

Young Tableaux with
Binary Search

T (2h) =
h∑

i=0

2i (h− i) 2T (N) =
h∑

i=0

2i+1(h− i)

T (N) = 2T (N)− T (N) =
21(h− 0) + 22(h− 1) + 23(h− 2) + . . . + 2h(1) + 2h+1(0)

−
[
20(h− 0) + 21(h− 1) + 22(h− 2) + . . . + 2h−1(1) + 2h(0)

]

Young Tableaux with
Binary Search

T (2h) =
h∑

i=0

2i (h− i) 2T (N) =
h∑

i=0

2i+1(h− i)

T (N) = 2T (N)− T (N) =
21(h− 0) + 22(h− 1) + 23(h− 2) + . . . + 2h(1) + 2h+1(0)

−
[
20(h− 0) + 21(h− 1) + 22(h− 2) + . . . + 2h−1(1) + 2h(0)

]

−h + 21 + 22 + + 2h

= −h +
h∑

i=1

2i = 2h+1 − 2− h

= 2log N+1 − 2− log N = 2N − 2− log N

Heap operations

Recall the basic two heap operations:
insert, deleteMin

Use percolateUp and percolateDown

If we want to change a key, we can also just use
percolateUp and percolateDown

The cost of each is constant + cost of percolate
up/down

Building a Heap from an
Array
How do we construct a binary heap from an array?

Simple solution: insert each entry one at a time

Each insert is worst case O(log N), so creating a
heap in this way is O(N log N)

Instead, we can jam the entries into a full binary
tree and run percolateDown intelligently

buildHeap

Start at deepest non-leaf node

in array, this is node N/2

percolateDown on all nodes in reverse level-order

for i = N/2 to 1
 percolateDown(i)

Analysis of buildHeap

N/2 percolateDown calls: O(N log N)?

But calls to deeper nodes are much cheaper

Percolate Down costs the height of the node

Let h be height of tree. 1 node at height h

2 nodes at (h-1), 4 nodes at (h-2)...

 nodes at height 0 2h

Analysis of buildHeap

Recall that h = log N

Total height of all nodes in heap is:

We solved this earlier today: T(N) = O(N)

T (N) =
h∑

i=0

2i(h− i)

HW2 Solutions

Up on Courseworks

Assignments

Homework 3

Look at practice problems

Weiss 6.4

