Data Structures and Algorithms

Session 12. March 2, 2009
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

** Homework 3 is out. Due 3/9

* Sample midterm problems on Courseworks
** Midterm review March $9^{\text {th }}$
* Midterm Exam March 11 ${ }^{\text {th }}$
** No work during break

Review

* Note about Young Tableaux *

米 Visualization of Splay Trees

* Tries
* Definition of Priority Queues
* Heap implementation

Today's Plan

* Solving the Young Tableaux Recurrences
** buildHeap description and analysis
* HW2 solutions

Young Tableaux

* Analysis of recursive solution to HW1's sorted 2d array problem is related to MergeSort and buildHeap
* MergeSort splits array into two subproblems, linear cost to merge

粦 We'll look at buildHeap later in today's class

Young Tableaux

* Using simple linear search, the running time is

$$
\begin{aligned}
T(N) & =2 T(N / 2)+c N \\
& =\sum_{i=0}^{\log N} 2^{i} c \frac{N}{2^{i}} \\
& =\sum_{i=0}^{\log N} c N \\
& =c N \log N
\end{aligned}
$$

Young Tableaux with Binary Search

米 Using binary search, the running time is:

$$
\begin{aligned}
T(N) & =2 T(N / 2)+\log N=\sum_{i=0}^{\log N} 2^{i} c \log \frac{N}{2^{i}} \\
& =\sum_{i=0}^{\log N} 2^{i}\left(\log N-\log 2^{i}\right)=\sum_{i=0}^{\log N} 2^{i}(\log N-i)
\end{aligned}
$$

* Let $\mathbf{h}=\log \mathbf{N}$

$$
T\left(2^{h}\right)=\sum_{i=0}^{h} 2^{i}(h-i)
$$

Young Tableaux with Binary Search

$$
T\left(2^{h}\right)=\sum_{i=0}^{h} 2^{i}(h-i) \quad 2 T(N)=\sum_{i=0}^{h} 2^{i+1}(h-i)
$$

$$
T(N)=2 T(N)-T(N)=
$$

$$
2^{1}(h-0)+2^{2}(h-1)+2^{3}(h-2)+\ldots+2^{h}(1)+2^{h+1}(0)
$$

$$
-\underline{\left[2^{0}(h-0)+2^{1}(h-1)+2^{2}(h-2)+\ldots+2^{h-1}(1)+2^{h}(0)\right]}
$$

Young Tableaux with Binary Search

$$
T\left(2^{h}\right)=\sum_{i=0}^{h} 2^{i}(h-i) \quad 2 T(N)=\sum_{i=0}^{h} 2^{i+1}(h-i)
$$

$$
T(N)=2 T(N)-T(N)=
$$

$$
2^{1}(h-0)+2^{2}(h-1)+2^{3}(h-2)+\ldots+2^{h}(1)+
$$

$$
-\frac{\left[2^{0}(h-0)+2^{1}(h-1)+2^{2}(h-2)+\ldots+2^{h-1}(1)+2^{h}(0)\right]}{-h+2_{h} 2^{1}+2^{2}+\cdots \cdots+2^{h}}
$$

$$
=-h+\sum_{i=1}^{h} 2^{i}=2^{h+1}-2-h
$$

$$
=2^{\log N+1}-2-\log N=2 N-2-\log N
$$

Heap operations

* Recall the basic two heap operations: insert, deleteMin

类 Use percolateUp and percolateDown
** If we want to change a key, we can also just use percolateUp and percolateDown

* The cost of each is constant + cost of percolate up/down

Building a Heap from an Array

* How do we construct a binary heap from an array?
* Simple solution: insert each entry one at a time
* Each insert is worst case $\mathbf{O}(\mathbf{l o g} \mathbf{N})$, so creating a heap in this way is $\mathbf{O}(\mathbf{N} \log \mathbf{N})$

米 Instead, we can jam the entries into a full binary tree and run percolateDown intelligently

buildHeap

* Start at deepest non-leaf node
* in array, this is node N/2
* percolateDown on all nodes in reverse level-order

类 for $\mathrm{i}=\mathrm{N} / 2$ to 1 percolateDown(i)

Analysis of buildHeap

* $\mathbf{N} / \mathbf{2}$ percolateDown calls: $\mathbf{O}(\mathbf{N} \log \mathbf{N})$?
* But calls to deeper nodes are much cheaper
* Percolate Down costs the height of the node
* Let \mathbf{h} be height of tree. 1 node at height \mathbf{h}
* 2 nodes at ($\mathbf{h} \mathbf{- 1}$), 4 nodes at ($\mathbf{h}-\mathbf{2}$)...

类 2^{h} nodes at height 0

Analysis of buildHeap

* Recall that $\mathbf{h}=\log \mathbf{N}$

米 Total height of all nodes in heap is:

$$
T(N)=\sum_{i=0}^{h} 2^{i}(h-i)
$$

* We solved this earlier today: $\mathbf{T}(\mathbf{N})=\mathbf{O}(\mathbf{N})$

HW2 Solutions

* Up on Courseworks

Assignments

* Homework 3
* Look at practice problems
* Weiss 6.4

