Data Structures and
Algorithms

Session 12. March 2, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 3 is out. Due 3/9

¥ Sample midterm problems on Courseworks
% Midterm review March 9t

¥ Midterm Exam March 11th

* No work during break




Review

* Note about Young Tableaux *
* Visualization of Splay Trees

¥ Tries

* Definition of Priority Queues

* Heap implementation




loday’s Plan

* Solving the Young Tableaux Recurrences
* buildHeap description and analysis

* HWZ2 solutions




Young lableaux

* Analysis of recursive solution to HW1’s sorted 2d
array problem is related to MergeSort and
buildHeap

* MergeSort splits array into two subproblems,
linear cost to merge

* We’'ll look at buildHeap later in today’s class




Young lableaux

* Using simple linear search, the running time is

T(N) = 2T(N/2)+cN




Young lableaux with
Binary Search

* Using binary search, the running time is:

log N N
T(N) = 2T(N/2)+logN = 2'clog —
(V) (N/2) + 1o N = 3 2'elog
log N log N
= Z 2! (logN—logQi) — Z 2" (log N — 1)
i=0 i=0
¥ Leth=log N "

T(2") = ) 2°(h—1i)

1=0




Young lableaux with
Binary Search

T(2") = » 2'(h—1) 2T(N) = 2" (h — 1)

T(N)=2T(N)—T(N) =
2'(h—0)+2%(h—1)+23(h —2) + ...+ 2"(1) + 2"*T1(0)
—[2°%h—=0)+2"(h—1)+2°(h—2) + ...+ 2" 71 (1) + 2"(0)]




Young lableaux with
Blnary Search

Z 22 . Z 27,—1—1

T(N)=2T(N)—-T(N) =
2'(h —0) +2%(h — 1) +2°(h 2)+
2°(h —0)+2"(h—1) +2°(h —2) +... + 2"
~h o+ 2+ 22 4

h —1)




Heap operations

* Recall the basic two heap operations:
Insert, deleteMin

* Use percolateUp and percolateDown

* If we want to change a key, we can also just use
percolateUp and percolateDown

* The cost of each is constant + cost of percolate
up/down




Bullding a Heap from an
Array

* How do we construct a binary heap from an array?
* Simple solution: insert each entry one at a time

* Each insert is worst case O(log N), so creating a
heap in this way is O(N log N)

* Instead, we can jam the entries into a full binary
tree and run percolateDown intelligently




bulldHeap

* Start at deepest non-leaf node
* in array, this is node N/2
* percolateDown on all nodes in reverse level-order

* fori=N/2to 1
percolateDown(i)




Analysis of bulldHeap

* N/2 percolateDown calls: O(N log N)?

* But calls to deeper nodes are much cheaper
* Percolate Down costs the height of the node
* Let h be height of tree. 1 node at height h

* 2 nodes at (h-1), 4 nodes at (h-2)...

* 2" nodes at height 0




Analysis of bulldHeap

* Recall that h =log N

* Total height of all nodes in heap is:
h .
T(N) =" 2'(h—i)
1=0

* We solved this earlier today: T(N) = O(N)




HW?2 Solutions

* Up on Courseworks




Assignments

* Homework 3
* Look at practice problems

* Weiss 6.4




