Data Structures and Algorithms

Session 11. February 25, 2009

Instructor: Bert Huang

http://www.cs.columbia.edu/~bert/courses/3137

Announcements

- # Homework 3 is out. Due 3/9
- * Midterm review March 9th
- Midterm Exam March 11th
- Manu is stepping down as a TA
- * New office hour Priyamvad Tuesday 3-5 PM

Review

- # HW1 solutions
- Splay Trees
 - Move accessed node to root
 - # Zig-Zag: double rotate (a la AVL)
 - # Zig-Zig: reverse order
- ** Prefix Trees (tries)

Today's Plan

- * Note about HW1 Problem 5
- * Visualization of Splay Trees
- * Cover Tries at normal pace
- Introduction to Priority Queues

Amortized Running Time

* In classical analysis, we try to prove:

$$MT(N) = O(M \log N)$$

If this is impossible, we can guarantee that M operations take:

$$\sum_{i=1}^{M} T_i(N) = O(M \log N)$$

Prefix Trees (Tries)

- * Nicknamed "Trie", short for retrieval
- * Efficiently store objects for fast retrieval via keys
 - * Usually key is a String
- * Basic strategy:
 - * split into sub-tries based on current letter

Trie Details

* Not all words are at leaves

* cat, cataclysm, cataclysmic

- * Initially, one letter is enough to uniquely identify
- When a new word is inserted that conflicts, need to branch
 - * Originally-unique word must be moved to lower level

Trie Analysis

- In the worst case, inserting a key of length k or (looking up) is O(k)
- * This is not dependent on N! (surprise, not factorial)
- Much better than log(N) for huge data like dictionaries
- Sometimes we can access words even faster.
 - * E.g., we can find qwerty uniquely with just "qw"

Priority Queues

* New abstract data type Priority Queue:

- * Insert: add node with key
- # deleteMin: delete the node with smallest key

* (increase/decrease priority)

Heap Implementation

- * Priority queues are most commonly implemented using Binary Heaps
 - * Binary tree with special properties
- * Heap Structure Property: all nodes are full, (except possibly one at the bottom level)
- * Heap Order Property: any node is smaller than its children

Array Implementation

- * A full tree is regular: we can easily store in an array
 - * Root at **A[1]**
 - * Root's children at A[2], A[3]
 - * Node i has children at 2i and (2i+1)
 - % Parent at floor(i/2)
- * No links necessary, so faster (in most languages)

Insert

* To insert key X, create a hole in bottom level

* Percolate up

Is hole's parent is less than X

* If so, put X in hole, heap order satisfied

If not, swap hole and parent and repeat

DeleteMin

- * Save root node, and delete, creating a hole
- * Take the last element in the heap X
- * Percolate down:
 - * Check if X is less than hole's children
 - # if so, we're done
 - * if not, swap hole and smallest child and repeat

Assignments

Start/continue HW3

* Read Weiss Section 6.1-6.3