
Data Structures and 
Algorithms
Session 11. February 25, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137



Announcements

Homework 3 is out. Due 3/9

Midterm review March 9th

Midterm Exam March 11th 

Manu is stepping down as a TA

New office hour Priyamvad Tuesday 3-5 PM



Review

HW1 solutions

Splay Trees

Move accessed node to root

Zig-Zag: double rotate (a la AVL)

Zig-Zig: reverse order

Prefix Trees (tries)



Today’s Plan

Note about HW1 Problem 5

Visualization of Splay Trees

Cover Tries at normal pace

Introduction to Priority Queues



Amortized Running 
Time

In classical analysis, we try to prove: 

If this is impossible, we can guarantee that M 
operations take:

M∑

i=1

Ti(N) = O(M log N)

MT (N) = O(M log N)



Prefix Trees (Tries)

Nicknamed “Trie”, short for retrieval

Efficiently store objects for fast retrieval via keys

Usually key is a String

Basic strategy: 

split into sub-tries based on current letter



Trie Example

“cat”, “cow”, “dog”, “doberman”, “duck”

Root

c d

o

g b

uoa

c
a
t

c
o
w

d
o
g

d
o
b
e
rm
a
n

d
u
c
k



Trie Details

Not all words are at leaves

cat, cataclysm, cataclysmic

Initially, one letter is enough to uniquely identify

When a new word is inserted that conflicts, need 
to branch

Originally-unique word must be moved to lower 
level



Trie Analysis

In the worst case, inserting a key of length k or 
(looking up) is O(k)

This is not dependent on N! (surprise, not factorial)

Much better than log(N) for huge data like 
dictionaries 

Sometimes we can access words even faster. 

E.g., we can find qwerty uniquely with just “qw”



Priority Queues

New abstract data type Priority Queue:

Insert: add node with key

deleteMin: delete the node with smallest key

(increase/decrease priority)



Heap Implementation

Priority queues are most commonly implemented 
using Binary Heaps

Binary tree with special properties

Heap Structure Property: all nodes are full, 
(except possibly one at the bottom level)

Heap Order Property: any node is smaller than its 
children



Array Implementation

A full tree is regular: we can easily store in an array

Root at A[1]

Root’s children at A[2], A[3]

Node i has children at 2i and (2i+1)

Parent at floor(i/2)

No links necessary, so faster (in most languages)



Insert

To insert key X, create a hole in bottom level

Percolate up

Is hole’s parent is less than X

If so, put X in hole, heap order satisfied

If not, swap hole and parent and repeat



DeleteMin

Save root node, and delete, creating a hole

Take the last element in the heap X

Percolate down:

Check if X is less than hole’s children

if so, we’re done

if not, swap hole and smallest child and repeat



Assignments

Start/continue HW3

Read Weiss Section 6.1-6.3


