
Data Structures and 
Algorithms
Session 10. February 23, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137



Announcements

Homework 2 due now.

Homework 3 to be posted after class. Due 3/9

Midterm review March 9th

Midterm Exam March 11th 

closed book, closed notes



Review

Brief look at tradeoffs

Balanced (AVL) Binary Search Trees

AVL Tree property

Tree Rotations

Worst case depth analysis



Today’s Plan

HW1 solutions (long overdue)

Splay Trees

Prefix Trees (tries)



HW1 Histogram

Average was 31.25, std-deviation 6



Amortized Running 
Time

Don’t guarantee each operation is O(log N)

Instead, prove that M operations take O(M log N)

Then each operation has an amortized running 
time of O(log N)



Splay Trees

Like AVL trees, use the standard binary search tree 
property

After any operation on a node, make that node the 
new root of the tree

Make the node the root by repeating one of two 
moves that make the tree more spread out



Informal Justification

Similar to caching. 

Heuristically, data that is accessed tends to be 
accessed often.

Easier to implement than AVL trees

No height info



Easy cases

If node is root, do nothing

If node is child of root, do single AVL rotation

Otherwise, node has a grandparent, and there are 
two cases



Case 1: zig-zag

Use when the node is the right child of a left child 
(or left-right)

Double rotate, just like AVL tree

a

b

c
w

x y

z
ab

c

w x y z



Case 2: zig-zig

Use when node is the right-right child (or left-left)

Reverse the order of grandparent->parent->node

Make it node->parent->grandparent

a

b

c y

w x

z

a

b

c

y

w

x

z



Case 2 versus
Single Rotations 1

6

5

4

3

2

1

7

6

5

4

3

2

1

7



Case 2 versus
Single Rotations 2

6

5

4

3

2

1

7

6

5

4

3

2

1

7



Case 2 versus
Single Rotations 3

6

5

4

3

2

1

7

6

5

4

3

2

1

7



Case 2 versus
Single Rotations 4

6

5

4

3

2

1

7

6

5

4

3

2

1

7



Prefix Trees (Tries)

Nicknamed “Trie”, short for retrieval

Efficiently store objects for fast retrieval via keys

Usually key is a String

Basic strategy: 

split into sub-tries based on current letter



Trie Example

“cat”, “cow”, “dog”, “doberman”, “duck”

Root

c d

o

g b

uoa

c
a
t

c
o
w

d
o
g

d
o
b
e
rm
a
n

d
u
c
k



Trie Details

Not all words are at leaves

cat, cataclysm, cataclysmic

Initially, one letter is enough to uniquely identify

When a new word is inserted that conflicts, need 
to branch

Originally-unique word must be moved to lower 
level



Trie Analysis

In the worst case, inserting a key of length k or 
(looking up) is O(k)

This is not dependent on N! (surprise, not factorial)

Much better than log(N) for huge data like 
dictionaries 

Sometimes we can access words even faster. 

E.g., we can find qwerty uniquely with just “qw”


