Data Structures and
Algorithms

Session 10. February 23, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 2 due now.

* Homework 3 to be posted after class. Due 3/9
% Midterm review March 9t

¥ Midterm Exam March 11th

¥ closed book, closed notes




Review

* Brief look at tradeoffs

* Balanced (AVL) Binary Search Trees
* AVL Tree property
* Tree Rotations

* Worst case depth analysis




loday’s Plan

* HW1 solutions (long overdue)
* Splay Trees

* Prefix Trees (tries)




HVW1 Histogram

* Average was 31.25, std-deviation 6




Amortized Running
Time

* Don’t guarantee each operation is O(log N)
* Instead, prove that M operations take O(M log N)

* Then each operation has an amortized running
time of O(log N)




Splay Trees

* Like AVL trees, use the standard binary search tree
property

* After any operation on a node, make that node the
new root of the tree

* Make the node the root by repeating one of two
moves that make the tree more spread out




INnformal Justification

* Similar to caching.

* Heuristically, data that is accessed tends to be
accessed often.

* Easier to implement than AVL trees

* No height info




Easy cases

* If node is root, do nothing

* If node is child of root, do single AVL rotation

* Otherwise, node has a grandparent, and there are
two cases




Case 1: zig-zag

* Use when the node is the right child of a left child
(or left-right)

* Double rotate, just like AVL tree




Case 2: zig-zig

* Use when node is the right-right child (or left-left)
* Reverse the order of grandparent->parent->node

* Make it node->parent->grandparent




Case 2 versus
Single Rotations




Case 2 versus
Single Rotations 2




Case 2 versus
Single Rotations 3




Case 2 versus
Single Rotations 4




Prefix Trees (Iries)

* Nicknamed “Trie”, short for retrieval

* Efficiently store objects for fast retrieval via keys
* Usually key is a String

* Basic strategy:

* split into sub-tries based on current letter




Irie Example

* “cat”, “cow”, “dog”, “doberman”, “duck”




Trie Detalls

* Not all words are at leaves
* cat, cataclysm, cataclysmic
* Initially, one letter is enough to uniquely identify

* When a new word is inserted that conflicts, need
to branch

* Originally-uniqgue word must be moved to lower
level




Trie Analysis

* In the worst case, inserting a key of length k or
(looking up) is O(k)

* This is not dependent on N! (surprise, not factorial)

* Much better than log(N) for huge data like
dictionaries

¥ Sometimes we can access words even faster.

* E.g., we can find gwerty uniquely with just “gw”




