
Data Structures in
Java
Session 7

Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134

Announcements

• Homework 2 released on website

• Due Oct. 6th at 5:40 PM (7 days)

• Homework 1 solutions posted

• Post homework to
Shared Files, Homework #2

Review

• Review of scope

• Stack applications examples

• Stack implementation (easy)

• Queue ADT definition and
implementation

Todayʼs Plan

• Lists, Stacks, Queues in Linux

• Introduction to Trees

• Definitions

• Tree Traversal Algorithms

• Binary Trees

Lists, Stacks, Queues
in Linux

• Linux:

• processes stored in Linked List

• FIFO scheduler schedules jobs using queue

• function calls push memory onto stack

Drawbacks of Lists
• So far, the ADTʼs weʼve examined have been

linear

• O(N) for simple operations

• Can we do better?

• Recall binary search: log N for find :-)

• But list must be sorted. N log N to sort :-(

Trees

• Extension of Linked List structure:

• Each node connects to multiple nodes

• Example usages include file systems,
Java class hierarchies

• Fast searchable collections

Tree Terminology
• Just like Linked Lists, Trees are

collections of nodes

• Conceptualize trees upside down (like
family trees)

• the top node is the root

• nodes are connected by edges

• edges define parent and child nodes

• nodes with no children are called leaves

More Tree
Terminology

• Nodes that share the
same parent are siblings

• A path is a sequence of
nodes such that the next
node in the sequence is a
child of the previous

More Tree
Terminology

• a nodeʼs depth is the
length of the path from
root

• the height of a tree is
the maximum depth

• if a path exists between
two nodes, one is an
ancestor and the other
is a descendant

Tree Implementation

• Many possible implementations

• One approach: each node stores a list of
children

• public class TreeNode<T> {
 T Data;
 Collection<TreeNode<T>> myChildren;
}

Tree Traversals

• Suppose we want to print all nodes in a tree

• What order should we visit the nodes?

• Preorder - read the parent before its children

• Postorder - read the parent after its children

Preorder vs.
Postorder

• // parent before children
preorder(node x)
 print(x)
 for child : myChildren
 preorder(child)

• // parent after children
postorder(node x)
 for child : myChildren
 postorder(child)
 print(x)

Binary Trees
• Nodes can only have two children:

• left child and right child

• Simplifies implementation and logic
• public class BinaryNode<T> {

 T element;
 BinaryNode<T> left;
 BinaryNode<T> right;
}

• Provides new inorder traversal

Inorder Traversal

• Read left child, then parent, then right child

• Essentially scans whole tree from left to right

• inorder(node x)
 inorder(x.left)
 print(x)
 inorder(x.right)

Binary Tree
Properties

• A binary tree is full if each node has
2 or 0 children

• A binary tree is perfect if it is full and
each leaf is at the same depth

• That depth is O(log N)

Expression Trees
• Expression Trees are yet another way to

store mathematical expressions

• ((x + y) * z)/300

• Note that the main mathematical
operators have 2 operands each

• Inorder traversal reads back infix notation

• Postorder traversal reads postfix notation

*
+

x y
z

/
300

Hungry?

Enough money?Do nothing

Chicken and Rice Subsconscious

Decision Trees
• It is often useful to design decision

trees

• Left/right child represents yes/no
answers to questions

Reading

• This class: Weiss 4.1-4.2

• Next class: Weiss 4.3

