Data Structures In
Java

Session 12
Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134

Announcements

e Homework 2 solutions posted

e Homework 3 due 10/20, if submitting
late, contact me

e Midterm Exam, open book/notes 10/22

e example problems posted on
courseworks

Review

Priority Queue data type
Heap data structure
Insert, percolate up

deleteMin, percolate down

Building a Heap from
an Array

How do we construct a binary heap from an
array?

Simple solution: insert each entry one at a time

Each insert is worst case O(log N), so creating a
heap in this way is O(N log N)

Instead, we can jam the entries into a full binary
tree and run percolateDown intelligently

buildHeap

o Start at deepest non-leaf node
e in array, this is node N/2

e percolateDown on all nodes in/g\
reverse level-order

o fori=N/2t0 1 /'\/.\A /!\/’\/!\

percolateDown(i) o © © © © ® ® @

buildHeap Example

8 3 9 2 6 I 12 | 99 | 5 4

buildHeap Example

8

4

@/\@
/@)\/ \/<€D <D/ \@
) () (5

buildHeap Example

8

4

@/\@
/@)\/ \/GD <D/ \@
) () ()

buildHeap Example

8

4

@/\@
/@)\/ \/GD @ \@
) () ()

buildHeap Example

8

4

@/\@
/@/ \/GD @ \@
) () ()

buildHeap Example

8

4

/®\
/@/ \@ @ \@
OJO0

Analysis of buildHeap

e N/2 percolateDown calls: O(N log N)?

e But calls to deeper nodes are muc

e Percolate Down costs the height of t

N cheaper

ne node

e | et h be height of tree. 1 node at height h

e 2 nodes at (h-1), 4 nodes at (h-2)..

. nodes at height O

buildHeap Running

Time h
T(2M = Zz"(h — i)
’ = 29 x 3
/ \

S, N
AR R R

Reducing the

- Summation
T(2") = » 2'(h—1) 2T(N) = 2" (h — 1)

T(N)=2T(N)—T(N) =
2'(h—0)+2%(h—1)+23(h —2) + ...+ 2"(1) + 2""1(0)
—[2°%h—=0)+2"(h—1)+2°(h—2) + ...+ 2" 71 (1) + 2"(0)]

Reducing the

- Summation
ohy = EZTUP%) 2TMU=§;T”w—ﬂ

T(N)=2T(N)—-T(N) =
2'(h—0)4+22(h—1)+2°(h—2) +... +2"(1) 4
—[2°(h = 0) + 2" (h = 1) + 22(h — 2) + ... + 2" 1(1) + 2"(0)]

—h o+ 2t 92 L 1 9h

_ _ ohtl o
Series 2 2=h
AENTEY _ loe V3T 75 _log N

Heap Operations

Insert — O(log N)
deleteMin — O(log N)
change key — O(log N)
buildHeap — O(N)

HeapSort

buildHeap, then deleteMin all elements

but we’d need to store elements In
separate array

Instead, build a max-heap (parent
always greater than child; root is max)

After each deleteMax, move deleted
element to end of array

Heapsort Animation

e image from http://en.wikipedia.org/wiki/Heapsort

Reading

e This class and next: Weiss 6.1-6.3

