
Object Oriented
Programming and Design

in Java

Session 9
Instructor: Bert Huang

Announcements

• Homework 2 due Mar. 3rd, 11 AM

• one week to go

• Midterm review Monday, Mar. 8th

• Midterm exam Wednesday, Mar. 10th

Review
• More Swing components

• JTextArea, JSplitPane

• Listeners in Swing

• Change listener

• Focus listener

• Mouse listeners

Today's Plan

• More LayoutManager examples

• BorderLayout, BoxLayout, GridLayout

• Discussion of Inheritance

Layout Managers
• LayoutManager is an interface in AWT

• Container objects call methods to add
components and lay them out

• Responsibilities:

• Calculate the minimum and preferred
size of the Container

• Lay out the Container's children

LayoutManager
Methods

• addLayoutComponent(String name, Component comp)

• layoutContainer(Container parent)

• Dimension minimumLayoutSize(Container parent)

• Dimension preferredLayoutSize(Container parent)

• removeLayoutComponent(Component comp)

BorderLayout
• Doesn't fit the Strategy pattern

• You specify where you add components

• container.add(Component, LOCATION)

• BorderLayout.PAGE_START (NORTH)

• BorderLayout.LINE_START (WEST)

• BorderLayout.CENTER

• BorderLayout.LINE_END (EAST)

• BorderLayout.PAGE_END (SOUTH)

 JButton button = new JButton("Button 1 (PAGE_START)");
 pane.add(button, BorderLayout.PAGE_START);

 //Make the center component big, since
 //that's the typical usage of BorderLayout.
 button = new JButton("Button 2 (CENTER)");
 button.setPreferredSize(new Dimension(200, 100));
 pane.add(button, BorderLayout.CENTER);

 button = new JButton("Button 3 (LINE_START)");
 pane.add(button, BorderLayout.LINE_START);

 button = new JButton("Long-Named Button 4 (PAGE_END)");
 pane.add(button, BorderLayout.PAGE_END);

 button = new JButton("5 (LINE_END)");
 pane.add(button, BorderLayout.LINE_END);

BoxLayout
• Left-to-right or top-to-bottom

• Obeys alignment field of container
• JComponent.setAlignmentX(float) // takes value

JComponent.setAlignmentY(float) // between 0 to 1

• Component.LEFT_ALIGNMENT
Component.RIGHT_ALIGNMENT
Component.CENTER_ALIGNMENT
Component.BOTTOM_ALIGNMENT
Component.TOP_ALIGNMENT

BoxLayout

• Unusual constructor:
new BoxLayout(Container, int axis)

• BoxLayout.X_AXIS, BoxLayout.Y_AXIS

• BoxLayout tries to grow components to
fill the space, subject to maximum size

 public static void addComponentsToPane(Container pane) {
 pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));

 addAButton("Button 1", pane);
 addAButton("Button 2", pane);
 addAButton("Button 3", pane);
 addAButton("Long-Named Button 4", pane);
 addAButton("5", pane);
 }

 private static void addAButton(String text, Container container) {
 JButton button = new JButton(text);
 button.setAlignmentX(Component.CENTER_ALIGNMENT);
 container.add(button);
 }

BoxLayout Example

GridLayout
• Lays out components on a grid from left to

right in rows from top to bottom

• Grows components to fill available space if
container is bigger than preferred size

• You specify grid size in constructor:
new GridLayout(int rows, int columns)

• One of rows or columns may be 0, which
tells AWT to add as many as needed

GridLayout Example
	 	 JFrame gridFrame = new JFrame("GridLayout");
	 	 gridFrame.setLayout(new GridLayout(2,3));
	 	
	 	 for (int i=0; i<6; i++)
	 	 	 gridFrame.add(new JButton("Component "+i));

Inheritance

• Describes a relationship between
classes in which a subclass is a more
specific form of a superclass

• Declared in Java with the keyword extends

Why Extend Classes?
• Inheritance may happen naturally

• AWT's Component first introduced in 1995

• Swing's JComponent in 1997

• Or it can be by design:

• we know we want to use fully functioning
objects of a general superclass

• but we also want more specific functionality
of some subclasses

Subclasses
• Subclasses often provide additional

methods and fields

• or they may override the superclass's
methods

• Java allows special keyword super to refer
to superclass

• used to invoke superclass's methods,
including constructor

	 private static class MyMouseListener extends MouseAdapter
	 {
	 	 public MyMouseListener(MousePanel panel)
	 	 {
	 	 	 super();
	 	 	 myPanel = panel;
	 	 }
	 	 public void mouseClicked(MouseEvent event)
	 	 {
 ...

Keyword super

• We saw this example last class

• MouseAdapter is the superclass

Liskov's Substitution
Principle

• Let q(x) be a property provable about
objects x of type T. Then q(y) should be
true for objects y of type S where S is a
subtype of T. (Liskov)

• You can substitute subclass objects
whenever a superclass object is
expected

• but not always vice versa (never)

EventObject Hierarchy

EventObject

ActionEvent ChangeEvent MouseEvent

Polymorphism and
Inheritance

• Overriding methods can cause some
confusion if we're unclear on how inheritance
works

• We extended MouseAdapter to make
MyMouseListener

• MouseAdapter ma = new MyMouseListener();
ma.mouseClicked(); // what happens?

• Actual types of objects, not declared types,
determine which methods are called

Encapsulation and
Inheritance

• Public and private modifiers apply even to
subclasses

• Extending a class doesn't grant you access to its
private methods

• Otherwise, implementations would not be
interchangeable, since subclasses would depend
on private class code

• Subclasses must implement their added
functionality using only public interface of
superclass

Preconditions and
Postconditions

• Subclass methods cannot have stricter
preconditions than superclass methods

• Subclass methods cannot have looser
postconditions than superclass methods

• Because all subclass objects must fit
Liskov substitution; they must be
viewable as superclass objects

Reading

• Layout examples from:
http://java.sun.com/docs/books/tutorial/
uiswing/layout/index.html

• Horstmann Ch. 6

