Object Oriented
Programming and Design
In Java

Session 9
Instructor: Bert Huang

Announcements

e Homework 2 due Mar. 3rd, 11 AM
® one week to go
e Midterm review Monday, Mar. 8th

e Midterm exam Wednesday, Mar. 10th

Review

e More Swing components
o JTextArea, JSplitPane
e |isteners in Swing
e Change listener
e Focus listener

e Mouse listeners

Today's Plan

e More LayoutManager examples
e BorderLayout, BoxLayout, GridLayout

e Discussion of Inheritance

Layout Managers

e | ayoutManager is an interface in AWT

e Container objects call methods to add
components and lay them out

e Responsibilities:

e Calculate the minimum and preferred
size of the Container

e | ay out the Container's children

LayoutManager
Methods

addLayoutComponent(String name, Component comp)
layoutContainer(Container parent)

Dimension minimumLayoutSize(Container parent)
Dimension preferredLayoutSize(Container parent)

removelLayoutComponent(Component comp)

BorderLayout

e Doesn't fit the Strategy pattern
e You specify where you add components
e container.add(Component, LOCATION)
e BorderLayout.PAGE_START (NORTH)
e BorderLayout.LINE_START (WEST)
e BorderLayout. CENTER
e BorderLayout.LINE_END (EAST)
e BorderLayout.PAGE_END (SOUTH)

BorderLayoutDemo

Button 1 (PAGE_START)

Button 3 (LINE_START) Button 2 (CENTER) 5 (LINE_END)

Long-Named Button 4 (PAGE_END)

JButton button new JButton("Button 1 (PAGE_START)");
pane.add(button, BorderLayout.PAGE_START);

//Make the center component big, since

//that's the typical usage of BorderLayout.
button = new JButton("Button 2 (CENTER)");
button.setPreferredSize(new Dimension(200, 100));
pane.add(button, BorderLayout.CENTER);

button = new JButton("Button 3 (LINE_START)");
pane.add(button, BorderLayout.LINE_START);

button = new JButton("Long-Named Button 4 (PAGE_END)");
pane.add(button, BorderLayout.PAGE_END);

button = new JButton("5 (LINE_END)");
pane.add(button, BorderLayout.LINE_END);

BoxLayout

Left-to-right or top-to-bottom

Obeys alignment field of container

JComponent.setAlignmentX(float) // takes value
JComponent.setAlignmentY(float) // between 0 to 1

Component.LEFT_ALIGNMENT
Component .RIGHT_ALIGNMENT
Component .CENTER_ALIGNMENT
Component .BOTTOM_ALIGNMENT
Component . TOP_ALIGNMENT

BoxLayout

¢ Unusual constructor:
new BoxLayout(Container, int axis)

e BoxLayout.X_AXIS, BoxLayout.Y_AXIS

e BoxLayout tries to grow components to
fill the space, subject to maximum size

BoxLayout Example

public static void addComponentsToPane(Container pane) {
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));

addAButton("Button 1", pane);

addAButton("Button 2", pane); !B°"L"V° EEX
addAButton("Button 3", pane); S
addAButton("Long-Named Button 4", pane); | Buten3 |
ClddABUttOﬂ(HSH R pane) > Long-Named Button 4

ks

private static void addAButton(String text, Container container) {
JButton button = new JButton(text);
button.setAlignmentX(Component.CENTER_ALIGNMENT);

container.add(button);

GridLayout

Lays out components on a grid from left to
right in rows from top to bottom

Grows components to fill available space if
container is bigger than preferred size

You specify grid size in constructor:
new GridLayout(int rows, int columns)

One of rows or columns may be 0, which
tells AWT to add as many as needed

GridLayout Example

JFrame gridFrame = new JFrame("GridLayout");
gridFrame.setLayout(new GridLayout(2,3));

for (int 1=0; 1<6; 1++)
gridFrame.add(new JButton("Component "+1));

|

e N O GridLayout
(" Component0) (Componentl) (Component2) eNo GridLayout
(Component 3) (Component 4) € Component 5)
Component 0 Component 1 Component 2
eSO GridLayout
Component 0 H Component 1 H Component 2
pnent 3 Component 4 Component 5
Component 3 H Component 4 H Component 5

N

Inheritance

depends on
MyTextReader f-------------------------- 24 Scanner

) | _._is an aggregate of
ContactList [> Contact

inherits from
Integer { Number

Describes a relationship between
classes in which a subclass is a more

specific form of a superclass

Declared in Java with the keyWOrd extends

Why Extend Classes?

¢ Inheritance may happen naturally
e AWT's Component first introduced in 1995
e Swing's JComponent in 1997

e Or it can be by design:

e we know we want to use fully functioning
objects of a general superclass

e but we also want more specific functionality
of some subclasses

Subclasses

e Subclasses often provide additional
methods and fields

e or they may override the superclass's
methods

e Java allows special keyword super to refer
to superclass

® used to invoke superclass's methods,
including constructor

Keyword super

e \Ve saw this example last class

e MouseAdapter is the superclass

private static class MyMouselistener extends MouseAdapter

{

public MyMouselListener(MousePanel panel)
{

super();

myPanel = panel;
}

public void mouseClicked(MouseEvent event)

{

Liskov's Substitution
Principle

e | et g(x) be a property provable about
objects x of type T. Then g(y) should be
true for objects y of type Swhere Sis a
subtype of T. (Liskov)

e You can substitute subclass objects
whenever a superclass object is
expected

e pbut not always vice versa (never)

EventObject Hierarchy

EventObject

JAN

ActionEvent

ChangeEvent

MouseEvent

Polymorphism and
Inheritance

Overriding methods can cause some
confusion if we're unclear on how inheritance
works

We extended MouseAdapter to make
MyMouseListener

MouseAdapter ma = new MyMouselListener();
ma.mouseClicked(); // what happens?

Actual types of objects, not declared types,
determine which methods are called

Encapsulation and
Inheritance

e Public and private modifiers apply even to
subclasses

e Extending a class doesn't grant you access to its
private methods

e QOtherwise, implementations would not be
iInterchangeable, since subclasses would depend
on private class code

e Subclasses must implement their added
functionality using only public interface of
superclass

Preconditions and
Postconditions

e Subclass methods cannot have stricter
preconditions than superclass methods

e Subclass methods cannot have looser
postconditions than superclass methods

e Because all subclass objects must fit
Liskov substitution; they must be
viewable as superclass objects

Reading

Layout examples from:
http://java.sun.com/docs/books/tutorial/
uiswing/layout/index.html

Horstmann Ch. 6

