
Object Oriented
Programming and Design

in Java

Session 7
Instructor: Bert Huang

Announcements

• Homework 1 due now

• Homework 2 posted on website,
due Mar. 3

• For fastest email queries, email all TAs
and me

• {bert@cs., jwg2116@, lep2128@, yh2315@}columbia.edu

Review

• Named ActionListeners

• Timers

• Interfaces and polymorphism

• Examples: List, Comparator,
Collection, Iterator

Today's Plan

• Introduction to programming patterns

• Patterns in GUI programming

• Model/View/Controller, Observer,
Composite, Decorator, Strategy

Programming
Patterns

• Common design challenges have been
solved over and over by others

• Many solutions are recorded as
patterns, useable in your own design

• Higher level form of abstraction than
more explicit, code-specific ideas
(e.g., encapsulation)

Pattern Format

• Patterns are defined by a general
context, the design challenge

• And a solution, which prescribes how
to design your program in the context

• Since patterns are general, they will
feature many interfaces

Iterator: Context

• An aggregate object contains element objects

• Clients need access to the elements

• The aggregate should not expose its internal
structure

• There may be multiple clients that need
simultaneous access

Iterator: Solution
• Define an iterator class that fetches on

element at a time

• Each iterator object keeps track of the
position of the next element to fetch

• If there are variations of the aggregate
and iterator class, implement common
interface types.

Patterns in GUI
Programming

• We saw in our example GUI programs
that GUI code can get messy

• Thus, there are many useful patterns
people have established for GUIs

Model-View-
Controller

• Context: GUI displays some data that the
user can affect via GUI

• Solution: separate objects into a model, a
view and a controller

• Model - stores the data

• View - displays the data from Model

• Controller - maps user actions to model
updates

MVC Diagram

View Controller

Model
"Hello World"

MVC Responsibilities
Model
Stores text and formatting markup (fonts, sizes, colors)
Notifies View to update when Model changes

View
Displays text with proper fonts and sizes
Displays toolbar
Notifies Controller when user edits text or clicks toolbar commands

Controller
Notifies model to change text when user inputs
Notifies model to perform special commands when toolbar
 buttons are clicked

Pattern: Observer
• A subject object is the source of events

• One or more observer objects want to know when an
event occurs

• Define an observer interface type

• The subject maintains collection of observer objects

• The subject provides methods for attaching observers

• Whenever an event occurs, the subject notifies all
observers

C
on

te
xt

So
lu

tio
n

Observers in MVC
• View observes Model; when Model

changes, it notifies View

• Controller observes View; when user
manipulates View, it notifies Controller

View Controller

Model

Pattern: Composite

JPanel

	 	 JPanel panel = new JPanel();
	 	 panel.setLayout(new GridLayout(0,1));

	 	 panel.add(new JButton("JComponents added"));
	 	 panel.add(new JLabel("to this JPanel"));
	 	 panel.add(new JTextField("are laid out"));
	 	 panel.add(new JButton("by GridLayout"));

	 	 frame1.add(panel);

	 	 frame1.add(new JButton("JComponents added"));
	 	 frame1.add(new JLabel("to this JFrame"));
	 	 frame1.add(new JTextField("are laid out"));
	 	 frame1.add(new JButton("by FlowLayout"));

Pattern: Composite
• Primitive objects can be combined into composite objects

• Clients treat a composite object as a primitive object

• Define an interface type that abstracts primitive objects

• Composite object contains a collection of primitive objects

• Both primitive and composite classes implement interface

• When implementing methods from the interface,
composite class applies method to its primitive objects
and combines the results

Pattern: Decorator

JScrollPane
	 public static void main(String[] args)
	 {
	 	 JFrame frame = new JFrame();
	 	
	 	 JPanel panel = new JPanel();
	 	 	
	 	 panel.setLayout(new GridLayout(10,10));
	 	
	 	 for (int i=0; i<ROWS; i++)
	 	 	 for (int j=0; j<COLS; j++)
	 	 	 	 panel.add(new JButton("Button (" + i + "," + j + ")"));
	 	
	 	 frame.add(new JScrollPane(panel), BorderLayout.CENTER);
	 	 frame.pack();
	 	 frame.setVisible(true);
	 }

Pattern: Decorator
• You want to enhance the behavior of a component class

• A decorated component can be used in the same way as a
plain component

• The component class shouldnʼt be responsible for the
decoration

• There may be an open-ended set of possible decorations

• Define an interface type that abstracts the component

• Concrete component classes implement this interface

• Decorator classes also implement this interface

• Decorator objects manage the component that it decorates

Pattern: Strategy

LayoutManager
• BoxLayout - draws components in a

row or a column

• BorderLayout - lets you specify where
to draw component (north, south, east,
west, center)

• GridLayout - draws components in a
grid pattern

Different Layouts

	 	 JFrame flowFrame = new JFrame("FlowLayout");
	 	 JFrame boxFrame = new JFrame("BoxLayout");
	 	 JFrame gridFrame = new JFrame("GridLayout");

	 	 flowFrame.setLayout(new FlowLayout());
	 	 boxFrame.setLayout(new BoxLayout(boxFrame.getContentPane(),
	 	 	 	 BoxLayout.Y_AXIS));
	 	 gridFrame.setLayout(new GridLayout(2,3));
	 	
	 	 for (int i=0; i<6; i++)
	 	 {
	 	 	 flowFrame.add(new JButton("Component "+i));
	 	 	 boxFrame.add(new JButton("Component "+i));
	 	 	 gridFrame.add(new JButton("Component "+i));
	 	 }

Pattern: Strategy
• A context class benefits from different variants of an

algorithm

• Clients of the context class sometimes want to supply
custom versions of the algorithm

• Define an interface type, called a strategy, that abstracts
the algorithm

• Each concrete strategy class implements a version of the
algorithm

• The client supplies a concrete strategy object to the
context class

• Whenever the algorithm needs to be executed, the context
class calls the appropriate methods of the strategy object

Using Patterns

• Lots of established, useful patterns

• Make sure the context applies to
situation before trying solution

• Understand why pattern solves the
problem before applying solution

Reading

• Horstmann Ch. 5

• Download and try code example(s)

• Next week, weʼll go over some off-book
Java GUI material

