Object Oriented
Programming and Design
In Java

Session 4
Instructor: Bert Huang

Announcements

e ACM competition
e Homework 1 officially out
e due Feb. 17th 11 AM

Image inverted for projection

v za

2

o
£y,
1

o
-. 4
t‘ih

Prizes: Xbox ¢

Register Online:

Homework 1

Battleship against computer via text
interface

Start ASAP

Use O.H. and email to bounce design
ideas off the TAs and me

Academic honesty

Have fun!

Review

e Turning ideas into a program
e Use cases
¢ [dentifying classes and responsibilities

e UML diagrams: class diagram,
sequence diagram, state diagram

e Example: todo list manager

¢ Reading voice mail example

Today’s Plan

e Review example from end of last class
e Designing classes

® encapsulation

® accessors/mutators

e programming by contract

Class Diagram

TodoFileManager Todoltem
savedFile : File fommmmeao__3 name : String
loadFile() date :Date
saveFile() getNamel()
i getDate()
", TodolList
\\‘ list<Todoltem> : ArrayList [;
~y

sort()

addltem()

deleteltem()

getltem(int index)

TodoPrompt

executeCommand(String s)
displayList()

Class Diagram

Todoltem

name : String
date :Date
getNamel)
getDate()

!

TodolList

TodoFileManager
list<Todoltem> : ArrayList 9

sort() ei— savedFile : File
addlitem() loadFile()
deleteltem() saveFile()
getlitem(int index)
)?\
TodoPrompt

executeCommand(String s)
displayList()

Sequence Dia

- Todo

gram 1

load from disq

Display lis
---1to user

User adds laundry j

mvList manager : prompt :
e TodoFileMan TodoPrompt
Todolist
| | |
| | |
create ! : :
| |
| |
I I e
create ; I Lt
1 =T |
1 add 1
k |
|
|
|
| |
| |
| | |
| start ! !
| L B P
I get a
|
|
e e [mmmmmmmmmmmm e =
: add "aundry”
! \.\.‘\s
|
|
: get
|
retufn name
-------------------------------- :%} .

- Display lis
. to user

State Diagram
by

no list loaded

!

- ~
list loaded,

prompt user to
view change list

(add or delete)
\

user exits,
save list

ldeas to Programs

Analysis (common sense)

_Today’s material

\g)esign (object-oriented)

Implementation (actual programming)

Designing Classes

e Even simple classes have various
design decisions:

e How much error checking?

e How much power should the user
have?

e How far “under the hood” can the user
see?

Why Encapsulation?

MyClass

elnt data
®String name

40therC1055 thing

void doSomething()e—|

int getSomething()e

The rest of your program...

No encapsulation

Why Encapsulation?

MyClass

int data

String name vold doSomething()

int getSomething()

Other(Class thing

L- /¥ interface methods */ 'J
W 4

The rest of your program...

Encapsulation

Why Encapsulation?

e Easier changes to implementation
e Control of inputs and outputs

e |Less old code to have to maintain when
updating

¢ When changes are made, easier to find
what code is affected

Good Interfaces

Cohesion - represent only one concept
Completeness - does everything you’d expect

Convenience - some syntactic sugar,
BufferedReader(new InputStreamReader(System.1in))

Clarity - behavior of class should be easy to explain
accurately

Consistency - naming conventions, etc

ACCessors vs.
Mutators

Methods to handle data members
Accessors for reading
Mutators for writing/modifying

Keep them separate

Side Effects

e Avoid methods with side effects

e Calling accessors repeatedly should
yield same result

e counterexample: Scanner.nextLine()

e Mutators should change things in an
obvious way

Programming by
Contract

e Another formalism to help organization

e All methods and classes have
“contracts” detailing responsibilities

e Contracts expressed as preconditions,
postconditions, and invariants

Preconditions

e Condition that must be true before
method is called

® e.g., Indices must be in range, objects
must not be null

e | imits responsibilities of your method

Assertions

You can check preconditions before
executing on bad input using assertions

Java includes assertions via

assert (boolean) : “explanation”;

When assertions enabled, program
exits and displays explanation

java -enableassertions MyProgram

Postconditions

e Conditions guaranteed to be true after
method runs

® e.g., after calling sort(), ToDoL.ist
elements are sorted by due date

e Useful when in addition to @return tags

e |.e., usually involves mutators or side
effects

Invariants

e (General properties of any member of a
class that are always true

® e.g., ToDolList is always sorted

e /mplementation invariants are useful
when building the class

e |nterface invariants are useful when
using the class

Exceptions

What happens when the contract is
breached? Crash?

Exceptions are ideal for when contracts
can be breached

javadoc:
@throws IndexOutOfBoundsException

throw new IndexOutOfBoundsException(“Accessed ” + 1
+ “ when size = ” + A.length());

Law of Demeter

e A method should only use
¢ |nstance fields of its class
e Parameters
e Objects that it constructs with new

e Think of your programs as growing

ToDolList.addltem()

TodolList

list<Todoltem> : ArrayList |

sort()
additem()
deleteltem()
getitem(int index)

addltem(String name, Date date)

@precondition ArrayList is initialized
@postcondition new item is in list
@postcondition list is sorted

assert list = null : “list wasn’t init’d”;

ToDolist.deleteltem()

TodolList

list<Todoltem> : ArrayList |
sort()
additem()
deleteltem()
getitem(int index)

e deleteltem(String itemName)

. @ o lit | |
rarmed-HemName {4}
e @postcondition item no longer in list

e @postcondition list is sorted

ToDolList.getltem()

TodolList

list<Todoltem> : ArrayList |

sort()
addltem()
deleteltem()

lgetitem(int index)|
e getltem(int index)

e @precondition 0 < index < list.size()
e @postcondition list is sorted

e @throws IndexOutOfBoundsException

e (This design is flawed.)

Reading

e Horstmann Ch. 3

