
Object Oriented
Programming and Design

in Java

Session 4
Instructor: Bert Huang

Announcements

• ACM competition

• Homework 1 officially out

• due Feb. 17th 11 AM

Image inverted for projection

Homework 1
• Battleship against computer via text

interface

• Start ASAP

• Use O.H. and email to bounce design
ideas off the TAs and me

• Academic honesty

• Have fun!

Review
• Turning ideas into a program

• Use cases

• identifying classes and responsibilities

• UML diagrams: class diagram,
sequence diagram, state diagram

• Example: todo list manager

• Reading voice mail example

Todayʼs Plan

• Review example from end of last class

• Designing classes

• encapsulation

• accessors/mutators

• programming by contract

Class Diagram

Class Diagram

Sequence Diagram 1

State Diagram

Ideas to Programs
Analysis

Design

Implementation

(common sense)

(object-oriented)

(actual programming)

Todayʼs material

Designing Classes
• Even simple classes have various
design decisions:

• How much error checking?

• How much power should the user
have?

• How far “under the hood” can the user
see?

Why Encapsulation?

No encapsulation

MyClass
int data
String name

OtherClass thing

void doSomething()
int getSomething()

The rest of your program...

Why Encapsulation?

Encapsulation

MyClass
int data
String name

OtherClass thing

void doSomething()
int getSomething()

The rest of your program...

/* interface methods */

Why Encapsulation?

• Easier changes to implementation

• Control of inputs and outputs

• Less old code to have to maintain when
updating

• When changes are made, easier to find
what code is affected

• Cohesion

• Completeness

• Convenience

• Clarity

• Consistency

• Cohesion - represent only one concept

• Completeness - does everything youʼd expect

• Convenience - some syntactic sugar,
BufferedReader(new InputStreamReader(System.in))

• Clarity - behavior of class should be easy to explain
accurately

• Consistency - naming conventions, etc

Good Interfaces

Accessors vs.
Mutators

• Methods to handle data members

• Accessors for reading

• Mutators for writing/modifying

• Keep them separate

Side Effects

• Avoid methods with side effects

• Calling accessors repeatedly should
yield same result

• counterexample: Scanner.nextLine()

• Mutators should change things in an
obvious way

Programming by
Contract

• Another formalism to help organization

• All methods and classes have
“contracts” detailing responsibilities

• Contracts expressed as preconditions,
postconditions, and invariants

Preconditions

• Condition that must be true before
method is called

• e.g., indices must be in range, objects
must not be null

• Limits responsibilities of your method

Assertions
• You can check preconditions before

executing on bad input using assertions

• Java includes assertions via
assert (boolean) : “explanation”;

• When assertions enabled, program
exits and displays explanation

• java -enableassertions MyProgram

Postconditions
• Conditions guaranteed to be true after

method runs

• e.g., after calling sort(), ToDoList
elements are sorted by due date

• Useful when in addition to @return tags

• I.e., usually involves mutators or side
effects

Invariants
• General properties of any member of a

class that are always true

• e.g., ToDoList is always sorted

• Implementation invariants are useful
when building the class

• Interface invariants are useful when
using the class

Exceptions
• What happens when the contract is

breached? Crash?

• Exceptions are ideal for when contracts
can be breached

• javadoc:
@throws IndexOutOfBoundsException

• throw new IndexOutOfBoundsException(“Accessed ” + i
 + “ when size = ” + A.length());

Law of Demeter

• A method should only use

• Instance fields of its class

• Parameters

• Objects that it constructs with new

• Think of your programs as growing

ToDoList.addItem()

• addItem(String name, Date date)

• @precondition ArrayList is initialized

• @postcondition new item is in list

• @postcondition list is sorted

• assert list != null : “list wasnʼt initʼd”;

ToDoList.deleteItem()

• deleteItem(String itemName)

• @precondition list has element
named itemName (?)

• @postcondition item no longer in list

• @postcondition list is sorted

ToDoList.getItem()

• getItem(int index)

• @precondition 0 ≤ index < list.size()

• @postcondition list is sorted

• @throws IndexOutOfBoundsException

• (This design is flawed.)

Reading

• Horstmann Ch. 3

