
Object Oriented 
Programming and Design 

in Java 

Session 3
Instructor: Bert Huang



Announcements

• Next Monday's class canceled for 
Distinguished Lecture: Feb 1, 11 AM 
Davis Auditorium. 

• Course survey due

• Homework 1 will be posted soon, 
"officially" out Feb. 3rd



Review

• basic syntax, javadoc, primitive types, 
references, importing packages, 
exceptions, input, Arrays, ArrayLists, 
declaration keywords, code style

• CUNIX and Eclipse demo



Todayʼs Plan
• Turning ideas into a program

• Use cases

• identifying classes

• UML diagrams: class diagram, 
sequence diagram, state diagram

• Example: todo list manager



Ideas to Programs
Analysis

Design

Implementation

(common sense)

(object-oriented)

(actual programming)



Phase 1: Analysis
• Ideas or description of final product may 

be inadequate

• Specifically describe requirements to be 
considered a completed program

• Decide on exact functionality 

• Limit ambition, but donʼt think too much 
about design and implementation



Use Cases

• Use cases specifically describe the 
operation of the program

• Narrows down exactly what you want 
your program to do

• Useful as test cases

• Implementation and design donʼt matter



Phase 2: Design

• More explicit about object interactions

• Define classes of objects

• Decide responsibilities of classes

• Define attributes and methods of 
classes



Identifying Classes
• Good first step: look for tangible nouns 

in use cases. Then...

• Agents - objects that perform tasks

• Events - store information about events

• Systems, interfaces - run the program, 
talk to user or other programs

• Foundational classes - String, Date, etc.



Identifying 
Responsibilities

• Good first step: look for verbs, actions 
in use cases

• These actions may directly describe 
responsibilities, or

• may depend on other responsibilities



CRC “Cards”
• Class - Responsibility - Collaborators

• Brainstorming tool for setting up classes 
and responsibilities

• Collaborators loosely define class 
relationships; we get more precise later

ClassName
responsibility 1
responsibility 2
...

Collaborator 1
Collaborator 2

...



Walkthroughs with 
CRC

• Play out (partial) use cases using CRC

• Who does what during the use case?

• Do some objects have too much 
responsibility?

• Create helper objects or agents

• Are some classes never used? 



Universal Modeling 
Language

• Standard formatting rules and syntax 
for modeling software

• More precise than CRC, but still looser 
than javadoc or actual code skeleton

• Start to name methods based on 
established responsibilities



UML Class Diagrams

• Each class is a rectangle

• Connect classes by their relationship

Class Name

Attributes : Type

Methods



Class Relationships
• Dependency - any time one class 

needs the other

• Aggregation - one class contains 
elements of the other class

• Association - other relationship

• Inheritance

• Interface Implementation



Sequence Diagrams
• Draw objects as they interact 

over time

• UML: underline to indicate 
instances

• Each object has dotted life-line

• Activation bars indicate 
object running

• Arrows indicate method calls

objectName : 
Class

other : 
Class

doSomething()



State Diagrams

• Useful for visualizing how an object 
changes over time

• Rounded rectangles represent states

• Arrows and text describe triggers for 
state changes

Type in 
all caps

Type in 
lowercasehit caps lock

hit caps lock



Checkpoint
• You should have a tractable design

• Manageable class complexity

• Clean encapsulation

• You can write the code skeleton and 
javadoc now

• Then Phase 3: Implement



Example: Console 
Todo List Manager

• Most programs start with a vague idea:

• Hey, <your name>, make me a program 
that like helps keep track of stuff I have 
to do. Or whatever. And it should sort by 
due date. 



Use Case 1
• User starts the program

• Display saved items numbered and sorted by 
due date.

• User enters “add laundry” at prompt

• User is prompted for a due date

• User enters date

• list updated and displayed with laundry in its 
correct sorted position



Use Case 2
• User has previously entered todo items, 

including “laundry” 

• User starts program

• To do list is displayed

• User enters “finished laundry”

• Laundry is removed from the list, 
remaining items displayed



Classes and 
Responsibilities

• Nouns: date, item, prompt, list

• Verbs: display, enters, add, delete, 
update, sort 

• Agents: file manager (saving + loading)

• Our classes: TodoItem, TodoPrompt, 
TodoList, TodoFileManager



CRC
TodoItem
Store name, date TodoList

TodoPrompt
Display list
get commands

TodoList

TodoList
Store list of items
Sort items
Add and remove

TodoItem
TodoPrompt

TodoFileManager

TodoFileManager
Load list from file
Save list to file

TodoList



CRC Walkthrough
TodoItem
Store name, date TodoList

TodoPrompt
Display list
get commands

TodoList

TodoList
Store list of items
Sort items
Add and remove

TodoItem
TodoPrompt

TodoFileManager

TodoFileManager
Load list from file
Save list to file

TodoList

• User starts the program

• Display saved items numbered and sorted by due date.

• User enters “add laundry” at prompt

• User is prompted for a due date

• User enters date

• list updated and displayed with laundry in its correct sorted position

add/delete TodoItem



Class Diagram



Class Diagram



Sequence Diagram 1



State Diagram



Violet

• I used Horstmannʼs Violet to draw the 
UML diagrams on last few slides

• http://horstmann.com/violet



Reading

• Horstmann Ch. 2

• Look at his VoiceMail example


