Object Oriented
Programming and Design
In Java

Session 25
Instructor: Bert Huang

Announcements

e Homework 5 due

e Final sample problems posted

e Mon. May 10th, Final exam. 9 AM - noon

¢ closed-book/notes, focus on post-
midterm material, but material is
iInherently cumulative

Today's Plan

¢ Broad overview of topics on the exam
e Key ideas from each topic area

e With remaining time, flip through tons of
highlight slides from previous classes

Exam Material

e You are responsible for all material we
covered in class

¢ Don't memorize minute details of Java;
focus on the ideas

e errors about Java specifics will receive
little to no penalty

e These slides and this class session will not
be comprehensive

Pre-Midterm

Design tools (UML, CRC cards, etc)
Designing classes, programming by contract
Interfaces and polymorphism

Programming patterns (Composite,
Decorator, Strategy, Template Method)

Inheritance and hierarchy

Types in Java

Post-Midterm

e More Design

Patterns e Frameworks
e Cloning and e Multithreading
Serialization

e Data Structures

e Reflection e Networking

e (Generics

Design Patterns

e Understand the general ideas of the
context and solution of each pattern

e Prototype, Adapter, Command, Factory
Method, Proxy, Singleton, Visitor

Cloning and
Serialization

Cloneable and Serializable as tagging
interfaces

Shallow copy vs. deep copy

Serialization of objects with references
to other objects

e transient fields

Drawbacks of serialization

Reflection

e Reflection allows programs to get
information about objects, classes,
methods and fields at runtime

e Useful for extremely general code (i.e.,
automated testing, debugging,
monitoring of programs at runtime)

(Generics

e (Generic classes, generic methods
e Type bounds, wild cards
e Type erasure

e Advantages of generics over using
Obijects (or other superclasses)

Frameworks

e |nversion of control

e Application frameworks (e.g., the graph
editor framework)

Multithreading

e Java Thread states
e Locks and conditions

e Deadlock

Data Structures

e Abstract Data Types
e Data structures and their ideal applications

® |.e., what operations are optimized Iin
each data structure

e Don't study data structure implementations
(unless it helps you remember what they're
used for)

Networking

e Socket and ServerSocket classes

e Connecting via TCP/IP over a port and
|IP addresses

Slide Highlights

java.lang.Object

e All class variables extend the base Java
class, java.lang.Obiject

e (Object contains a few implemented methods:
e String toString()
e boolean equals(Object other)
e QObiject clone()
¢ int hashCode()

clone()

Clone is meant to be used when you want
an actual copy of an Object instead of
another reference

(x.clone() = x) && (x.clone().equals(x))
Default clone() copies all fields

clone() is a protected method by default and
can only be used if your subclass
implements the Cloneable interface

The Cloneable
Interface

e Tagging interface; contains no methods

e But Object uses it to check that calls to
clone() are only on Cloneable objects

e otherwise throws cloneNotSupportedexception

e Must be careful; copying fields may still
share common aggregated objects

Shallow vs. Deep
Copy

e =
T TR : Employee

name

35000 : String

salary
hireDate

cloned =
e : Employee

name = S
salary = 35000 . Date
hireDate = —— |

Shallow vs. Deep
Copy

Cloning all fields won’t clone any Class
variables, like String or Date

Then if the clone modifies the Date
object, the original’s Date gets changed

Instead, we can recursively clone all
mutable class objects

Deep Copy Recursion

e Recursively cloning fields can cause
very bad things to happen

e Consider MVC objects that store
references to each other

Model——View

AN

Controller

Model

— View

—

Control

er

v

Controller|<View

-«

Model

v

Model—|View

—>

Controller

Serializable Interface

¢ Another tagging interface

e Tells Java that a class is able to be written to file
using ObjectOutputStream

e new ObjectOutputStream(FileOutputStream f)

e ObjectOutputStream.writeObject(Serializable s)

e Writes the object and all its fields and referenced
objects to file

e Fjelds not to be written can be marked with
keyword transient

Serializing Circular
Structure

e Files assign serial numbers to Objects

e So circular structure can be saved
without infinite recursion

e But we can only load one object

o | et's test this with an experiment

Model——View

AN

Controller

Reflection

e Reflection is the ability of a program to
find out about the capabilities of objects
at runtime

e Java provides these classes to describe
features of types:

e Class, Package, Field, Method,
Constructor, Array

Class Objects

®* (obj instanceof Shape) onIy tells you If variable obj
IS a subtype of shape

e |f you want to know the exact class, you
need to use a class ObjeCt obj.getClass()

e JVM keeps one object of each known class,
SO use == operator to check class equality

e Can also directly get class objects by
Shape.class == obj.getClass()

Class Attributes

@® Shape.class.getSuperClass() //returns Class
@® Shape.class.getInterfaces() //returns Interface[]
@

Shape.class.getPackage() //returns Package

Shape.class.getDeclaredMethods() //returns Method[]é

Shape.class.getDeclaredFields() //returns Field[]

@® Shape.class.getDeclaredConstructors()//Constructor[]

Method Obijects

m.getName(), m.getParameterTypes()

Also can get Method objects using
Method m = getDeclaredMethod(name, params, ...)

Then call methods with m.invoke(params)

Rarely useful, but can be used to build
general testing programs

Field Objects

® C(lass getType()
® int getModifiers() // binary flags
@® Modifier.isAbstract(), isPrivate(), isFinal(), etc
@® Object get(Object obj) // reads field
® void set(Object obj, Object value)

@® void setAccessible(boolean b) // changes whether private
// fields are accessible. Wait, what???!

e Java programs allow this by default,
applets and servlets do not.

Why Reflection?

e Pros:

e Extremely powerful way to dynamically retrieve
information about Classes by name

e Retains Object Oriented ideas

e Allows for meta-programs (like JUnit)
e Cons:

e (Can break encapsulation

e Some anti-polymorphism ideas, e.g., checking an
actual class type instead of trusting hierarchy

Old-Fashioned

G |
public class ArrayList {
void add(Object obj) { ... }
Object get(int index) { ... }

}

Any Object subclass works
Runtime exception when typecasting fails

We could use reflection to check all casts

Generic Types

e Declared with a generic placeholder
@® public class Box<T> { ... }

@® Box<String> b = new Box<String>();

@® Box<Integer> b = new Box<Integer>();
® public class Pair<T,U> { ... }

@® Pair<String, Date> p = new Pair<String, Date>();

Generic Methods

e \We can use generic types in methods, which
get resolved dynamically when the method is
called

public static <E> void fill(ArraylList<E> a, E value, int count)

{

for (int 1 = 0; 1 < count; 1++)
a.add(value);

e This checks that the ArrayList and value are of
the appropriate type at compile time

Type bounds

e QOccasionally, generic types are too restrictive

public static <E> void append(ArraylList<E> a,
ArraylList<E> b, int count)

{

for (int 1 =0; 1 < count && 1 < b.size(); 1++)
a.add(b.get(i));

e \We can use a type bound to relax restrictions

public static <E,

F extends E

> void append(ArraylList<E> a,

ArraylList<F> b, 1nt count)

Wildcaras

e Type bounds still require that the client
defines the generic types

e Sometimes this is undesirable, so we
can use wildcards instead

public static <E> void append(ArraylList<E> a,
ArraylList<? extends E>|b, int count)

{

for (int 1 =0; 1 < count && 1 < b.size(); 1++)
a.add(b.get(i));

Type Erasure

e After javac checks correct type usage with
generics, it strips all types from the code into
raw types

® The resulting code is similar to old-
fashioned “generic” code, using Object
variables (or the most general superclass)

e This allows compatibility with older code

¢ but unfortunately leads to some limitations

Frameworks

e Sets of cooperating classes that implement
mechanisms essential for a particular
problem domain

e Application frameworks implement services
common to a certain type of application

e Programmers subclass some framework
classes and implement additional
functionality specific to the target application

Packages

e Typically, framework classes can be
stored in packages

® javax.swing.”, java.awt.”, java.applet.”

e Allows clients to import easily

Inversion of Control

e Most of the work is done by the
framework, as in the template method

and strategy patterns

e The programmer doesn’t need to be
concerned with control flow, just the
specifics of the applications

Multithreading

Modern computer programs perform various
calculations simultaneously

Each parallel program unit is called a thread

In most cases, threads are not actually run
in parallel, but by taking turns

But the OS is responsible for the turn-taking;
we don’t know its policy

Thread States

blocked
block
unblock

run exits

runnable

'Reasons for block:
'Sleep

Waiting for 1/O
Waiting to acquire Iock

‘Waltlng for condltlon Jl

Thread (abridged)

void join() - Waits for this thread to die

static void sleep(long millis) - Causes the currently

executing thread to sleep (temporarily cease execution)
for the specified number of milliseconds, subject to the
precision and accuracy of system timers and schedulers.

void start() - Causes this thread to begin execution; the
Java Virtual Machine calls the run method of this thread.

static void yield() - Causes the currently executing
thread object to temporarily pause and allow other
threads to execute.

Runnable

Method Summary

When an object implementing interface Runnable is used to create a thread,

starting the thread causes the object's run method to be called in that separately
executing thread.

Method Detail

run

void run()

When an object implementing interface Runnable is used to create a thread, starting

the thread causes the object's run method to be called in that separately executing
thread.

The general contract of the method run is that it may take any action whatsoever.

Object

void

notify()
Wakes up a single thread that is waiting on this object's monitor.

void

notifyAll()
Wakes up all threads that are waiting on this object's monitor.

String

toString()
Returns a string representation of the object.

void

wait()
Causes the current thread to wait until another thread invokes the notify() method or the
notifyAll () method for this object.

void

wait(long timeout)
Causes the current thread to wait until either another thread invokes the notify() method or the
notifyall () method for this object, or a specified amount of time has elapsed.

void

wait(long timeout, int nanos)

Causes the current thread to wait until another thread invokes the notify () method or the
notifyall () method for this object, or some other thread interrupts the current thread, or a certain amount
of real time has elapsed.

Interrupting Threads

e |f you need to terminate a public void runQ {
thread, call try 1

while(more_work_to_do) {

Thread.interrupt() // do work

Thread.sleep(DELAY);
e Causes Thread.sleep() to }

throw InterruptedException ¢ |
catch(InterruptedException e)

e Your run method should }f
be structured to handle // clean up

interrupts cleanly }

Joining Threads

e myThread.join() joins Thread myThread
with the current thread

e |.e., waits for myThread to finish its
run() method

Current thread

my Thread /)

Locks

We can use locks to fix race conditions
Threads temporarily acquire ownership of locks
Only one thread can own a lock at a time

If a thread tries to acquire a lock but it is owned
by another, it waits

When a lock owner releases the lock, all
waiting threads are notified

Lock Interface

* java.util.concurrent.locks package iIncludes
the Lock interface

e Obijects that implement Lock have

@® lock() // prevent other threads from
// locking this object

@® unlock() // allow other threads to lock this

Condition Objects

Each Lock can have any number of condition Objects

Condition setNonEmpty = setlLock.newCondition()

setlLock.lock()
while(set.isEmpty())
setNonEmpty.await() // releases the lock

Whenever the condition could have changed, call
setNonEmpty.signalAll()

e Unblock all waiting threads, but a thread must
reacquire the lock before returning from await

Dining Philosophers

e Example of deadlock when threads need two
or more locks (e.g., moving objects from list

to list)
e Each diner locks chopsticks then eats

e |eftChopstick.lock()
rightChopstick.lock()
eat()
rightChopstick.unlock()
leftChopstick.unlock()

First Problem:
Starvation

e Since we don’t know how OS will
schedule threads, two diners may never
get to eat

e ReentrantLock has a fairness flag that
makes sure locks are granted first-
come-first-served

e new ReentrantLock(true);

Second Problem:
Deadlock

e [f all diner threads start simultaneously, we
can get stuck in a deadlock

e Each philosopher locks his left chopstick,
waits for right chopstick

e Even if we use conditions and release the
chopsticks, we could have livelock

¢ Infinite loop of simultaneously locking and
releasing the left chopsticks

Two Deadlock
Solutions

e Order the chopsticks; locks must be acquired in the
same order

e No circular deadlock, but now some threads have
higher priority

¢ Require master lock to lock any chopsticks

e master.lock()
leftChopstick.lock(); rightChopstick.lock();
master.unlock();
eat()
leftChopstick.unlock(); rightChopstick.unlock()

Lists

An ordered series of objects
Each object has a previous and next

e Except first has no prev.,
last has no next

We can insert an object (at location k)
We can remove an object (at location k)

We can read an object (from location k)

ArrayList

Essentially a wrapper for an array

Store elements in array, but handles list
operations by shifting elements

h | | o
N N N

h e I I o

If array is full, copies into a new larger array
O(1) get, O(N) insert/remove

e O(1) insert/remove at the end of list

Stores elements in Link objects

LinkedList

Each link has reference to next (and prev)

e prev links only in doubly-linked list

Navigate by following next() references

O(1) insert/remove with reference

e But need O(N) to find (get) reference

<4

0

4—
—

1

4—
—

2

4—
—

3

4—
—

4

—

Stacks and Queues

e Stack - Last in first out ‘
e push() - add element to top of stack !

* pop() - remove element from top -

http://bwog.net/2006/05/03/tray-spotting

e Queue - First in first out
e enqueue (offer) - add element at back of line

e dequeue (poll) - remove from front of line

Sets

An unordered collection

No duplicate entries

We can insert an object

We can check for an object — contains()

We can remove an object

HashSet

e Uses hashCode() to index into an array

e (Collisions occur when distinct elements
hash into the same index

e (Collisions resolved by trying empty
spots in a systematic way

Maps

Maps are collections of objects
"Indexed" by other objects

key types map to value types

No duplicate keys, duplicate values

d

d

lowed

Ka "associative array"

HashMap

@® Map<String, Double> costs =
new HashMap<String, Double>();

@® myMap.put("Big Mac", 2.99);

@® myMap.get("Big Mac");
¢ index by the key's hashCode()

e but insert value instead of key

Sets, Maps,
Collections

e Recall that Set is a subinterface of
Collections that has no new methods

e HashMap doesn't implement Collection

e Has methods
o Set<K> keyset()

e (Collection<V> values()

Sorted Map ADT

e Subtype of Map (can get value by key)
@® SortedMap<K implements Comparable,V>
@® SortedMap<K,V> subMap(K fromKey, K toKey)

o firstKey, lastKey, headMap, tailMap

TreeMap

Implements SortedMap

put(), get(), contains() cost O(log N)

Uses an advanced binary search tree
called Red-Black Tree

e a balanced BST
Slower than HashMap, but keys have

order

Binary Search Tree

e Tree nodes have left and right children

e | eft children are less than parent, @

e Right children are greater than parent @ @
e At each node, O(1) comparison

determines which child to move to e @ @
e Depth of tree is the worst-case time for @

each operation

Priority Queue ADT

e Stores elements by priority (serves as
the key)

e Not really a queue, but used in similar
applications

e add aka offer(E e)
¢ deleteMin aka poll()
e findMin aka peek()

Heaps

e Binary tree with heap order property:
Keys of children greater than parent’s

¢ Running time: (%)
® O(Odg N) add, @ @
e O(log N) deleteMin, OO0 00

e O(1) findMin

Context

Solution

Prototype Pattern

A system needs to create several kinds of objects whose classes
are not known when the system is built

You don’t want to require a separate class for each kind of object

You want to avoid a separate hierarchy of classes whose
responsibility it is to create the objects

Define a prototype interface common to all created objects

Supply a prototype object for each kind of object that the system
creates

Clone the prototype object whenever a new object of the given
kind is required

Prototype Pattern

Creator

createlnstance()

-

-
-
L

Clones the
prototype

«interface»

4 Prototype

Concrete
Prototype1

Concrete
Prototype2

ADAPTER

You want to use an existing adaptee class without
modifying it.

=
X
g ¢ The context in which you want to use the class
8 requires conformance to a target interface
e The target interface and the adaptee interface are
conceptually related
- ° Define an adapter class that implements the target
0 interface
)
—g e The adapter class holds a reference to the adaptee.
95! It translates target methods to adaptee methods

The client wraps the adaptee into an adapter class
object

Adapter Diagram

Client

—————————————————————

-

”
-

Calls
adapteeMethod()

«interface»
Target

targetMethod()

A

Adapter

Adaptee

targetMethod()

adapteeMethod()

COMMAND

You want to implement commands that behave like
objects, either because

=
X
9 e you want to store additional information with
5 commands,
O

e or you want to collect commands

e Define a command interface type with

a method to execute the command
c
.8 e Supply methods in the command interface type to
=) manipulate the state of command objects
0
Vo)

Each concrete command class implements the
command interface type

To invoke the command, call the execute method

Command Example

«interface»
, Command
Client’ p-rrmreresesmemnne=s
] . . execute()
e (Client: painting program 5
e User performs various menu actions

e Multi-level undo needs to know action history o cee
Command

e Each type of action is a concrete s

implementation of a Command interface execute()

e Each action also implements an undo()
method

e (Client program stores stack of commands;
pop().undo() to undo most recent command

Context

FACTORY-METHOD

A creator type creates objects of another product type

Subclasses of the creator type need to create different
kinds of product objects

Clients do not need to know the exact type of product
objects

Solution

Define a creator type that expresses the commonality of all
creators

Define a product type that expresses the commonality of all
products

Define a factory method in the creator type. The factory
method yields a product object

Each concrete creator class implements the factory method
so that it returns an object of a concrete product class

Example Factory-Method

«interface»
Creator

factoryMethod()

«interface»
Product

:;

Concrete

Creator: Collection | ©reator

Concrete Creator: LinkedList
factoryMethod(): iterator()

Product: Iterator

ConcreteProduct: LinkedListlterator

T

Concrete
Product

Context

PROXY

A real subject class provides a service that is
specified by an subject interface type

There is a need to modify the service in order to
make it more versatile

Neither the client nor the real subject should be
affected by the modification

Solution

Define a proxy class that implements the subject
interface type. The proxy holds a reference to the real
subject

The client uses a proxy object

Each proxy method invokes the same method on the
real subject and provides the necessary modifications

Proxy Diagram

« inte rface »

Client l--cmmmommoooe Subject

request()

Proxy RealSubject

request() request()

/
/

Invokes same
method on

subject

Context

SINGLETON

All clients need to access a single shared
instance of a class

You want to ensure that no additional
iInstances can be created accidentally

Solution

Define a class with a private constructor
The class constructs a single instance of itself

Supply a static method that returns a
reference to the single instance

Context

VISITOR

An object structure contains element classes of multiple
types, and you want to carry out operations that depend on
the object types

The set of operations should be extensible over time

The set of element classes is fixed

Solution

Define a visitor interface that has methods for visiting
elements of each of the given types

Each element class defines an accept method that invokes
the matching element visitation method on the visitor
parameter

To implement an operation, define a class that implements
the visitor interface type and supplies the operation's action
for each element type

v «interface»
«Interface» Visitor
Element (.
visitConcreteElement1()
accept() visitConcreteElement2()
A visitConcreteElement3()
i 7Y
E i
E i i i
: ! : !
Concrete Concrete Concrete :
Element1 Element2 Element3 Concrete
Visitor
accept() accept() accept()
Calls /', /
visitConcreteElementl() / 7

1 /

'
/’ 4
N ’

! '

F '

C‘] l;’, |] n
viqslthonc reteElement?2 (l;] ,," VI S Ito r D I ag ra m

/
/
/
/
L

Calls
visitConcreteElement3()

Double Dispatch

e This pattern uses polymorphism twice to make
code very general

e 1st, element.accept() calls Visitor method
based on type of element

e 2nd, the Visitor method performs operation
based on type of Visitor

e Both actions called through interfaces

e (Concrete classes need not be known at runtime

Example Visitor

«interface» :
Fi|eSystem FlleSYStem
Node R Visitor
accept() visitFileNode()
A visitDirectoryNode()
FileNode Directory
Node
accept()
i accept()
Calls
visitFileNode .
Calls
visitDirectoryNode

Double Dispatch in
FileSystemNode

client : Directory . Prlnt
Node Visitor
| 1 |
— | |
accept, | :
\ visitDirectoryNode, <!
‘\ \‘\ |
\ T \ [
“ | \ |
— \ | ‘\ |
| ‘\ I ' |
Polymorphic Polymorphic
selection of selection of
node type visitor type

Sockets

Socket " Socket

I

e (On each side of a TCP/IP connection, there is a socket

e Java lets us abstract away the details and work with
the sockets

e (One endis a server and the other is a client

e Each socket has an InputStream and an OutputStream

Socket API

Common constructor:
new Socket(String host, int port)

InputStream getInputStream()
OutputStream getOutputStream()

void close()

|OEXxceptions everywhere; lots of try/catch
blocks in Socket code

But how do we set up the host? ServerSocket

ServerSocket API

Constructor:
new ServerSocket(int port)

Socket accept() // Listens for a connection to be made and
accepts it

close();

Get Sockets using accept() and perform logic with them
using their InputStream and OutputStream

Usually, wrap with new BufferedReader(socket.getInputStream())

® and new PrintWriter(socket.getOutputStream())

Why Study OOP and
Design?

e Writing a code is easy
e Understanding code is hard

e (Good organization and design of
programs makes understanding easier

