
Object Oriented
Programming and Design

in Java

Session 25
Instructor: Bert Huang

Announcements

• Homework 5 due

• Final sample problems posted

• Mon. May 10th, Final exam. 9 AM - noon

• closed-book/notes, focus on post-
midterm material, but material is
inherently cumulative

Today's Plan

• Broad overview of topics on the exam

• Key ideas from each topic area

• With remaining time, flip through tons of
highlight slides from previous classes

Exam Material
• You are responsible for all material we

covered in class

• Don't memorize minute details of Java;
focus on the ideas

• errors about Java specifics will receive
little to no penalty

• These slides and this class session will not
be comprehensive

Pre-Midterm
• Design tools (UML, CRC cards, etc)

• Designing classes, programming by contract

• Interfaces and polymorphism

• Programming patterns (Composite,
Decorator, Strategy, Template Method)

• Inheritance and hierarchy

• Types in Java

Post-Midterm

• More Design
Patterns

• Cloning and
Serialization

• Reflection

• Generics

• Frameworks

• Multithreading

• Data Structures

• Networking

Design Patterns

• Understand the general ideas of the
context and solution of each pattern

• Prototype, Adapter, Command, Factory
Method, Proxy, Singleton, Visitor

Cloning and
Serialization

• Cloneable and Serializable as tagging
interfaces

• Shallow copy vs. deep copy

• Serialization of objects with references
to other objects

• transient fields

• Drawbacks of serialization

Reflection

• Reflection allows programs to get
information about objects, classes,
methods and fields at runtime

• Useful for extremely general code (i.e.,
automated testing, debugging,
monitoring of programs at runtime)

Generics

• Generic classes, generic methods

• Type bounds, wild cards

• Type erasure

• Advantages of generics over using
Objects (or other superclasses)

Frameworks

• Inversion of control

• Application frameworks (e.g., the graph
editor framework)

Multithreading

• Java Thread states

• Locks and conditions

• Deadlock

Data Structures
• Abstract Data Types

• Data structures and their ideal applications

• i.e., what operations are optimized in
each data structure

• Don't study data structure implementations
(unless it helps you remember what they're
used for)

Networking

• Socket and ServerSocket classes

• Connecting via TCP/IP over a port and
IP addresses

Slide Highlights

java.lang.Object
• All class variables extend the base Java

class, java.lang.Object

• Object contains a few implemented methods:

• String toString()

• boolean equals(Object other)

• Object clone()

• int hashCode()

clone()
• Clone is meant to be used when you want

an actual copy of an Object instead of
another reference

• (x.clone() != x) && (x.clone().equals(x))

• Default clone() copies all fields

• clone() is a protected method by default and
can only be used if your subclass
implements the Cloneable interface

The Cloneable
Interface

• Tagging interface; contains no methods

• But Object uses it to check that calls to
clone() are only on Cloneable objects

• otherwise throws CloneNotSupportedException

• Must be careful; copying fields may still
share common aggregated objects

Shallow vs. Deep
Copy

Shallow vs. Deep
Copy

• Cloning all fields wonʼt clone any Class
variables, like String or Date

• Then if the clone modifies the Date
object, the originalʼs Date gets changed

• Instead, we can recursively clone all
mutable class objects

• Recursively cloning fields can cause
very bad things to happen

• Consider MVC objects that store
references to each other

Deep Copy Recursion

Model View

Controller

Model View Controller

ModelViewController

Model View Controller Model

Serializable Interface
• Another tagging interface

• Tells Java that a class is able to be written to file
using ObjectOutputStream

• new ObjectOutputStream(FileOutputStream f)

• ObjectOutputStream.writeObject(Serializable s)

• Writes the object and all its fields and referenced
objects to file

• Fields not to be written can be marked with
keyword transient

Serializing Circular
Structure

• Files assign serial numbers to Objects

• So circular structure can be saved
without infinite recursion

• But we can only load one object

• Let's test this with an experiment
Model View

Controller

Reflection
• Reflection is the ability of a program to

find out about the capabilities of objects
at runtime

• Java provides these classes to describe
features of types:

• Class, Package, Field, Method,
Constructor, Array

Class Objects
• (obj instanceof Shape) only tells you if variable obj

is a subtype of Shape

• If you want to know the exact class, you
need to use a class object obj.getClass()

• JVM keeps one object of each known class,
so use == operator to check class equality

• Can also directly get class objects by
Shape.class == obj.getClass()

Class Attributes

• Shape.class.getSuperClass() //returns Class

• Shape.class.getInterfaces() //returns Interface[]

• Shape.class.getPackage() //returns Package

• Shape.class.getDeclaredMethods() //returns Method[]

• Shape.class.getDeclaredFields() //returns Field[]

• Shape.class.getDeclaredConstructors()//Constructor[]

Method Objects

• m.getName(), m.getParameterTypes()

• Also can get Method objects using
Method m = getDeclaredMethod(name, params, ...)

• Then call methods with m.invoke(params)

• Rarely useful, but can be used to build
general testing programs

Field Objects
• Class getType()

• int getModifiers() // binary flags

• Modifier.isAbstract(), isPrivate(), isFinal(), etc

• Object get(Object obj) // reads field

• void set(Object obj, Object value)

• void setAccessible(boolean b) // changes whether private
 // fields are accessible. Wait, what???!

• Java programs allow this by default,
applets and servlets do not.

Why Reflection?
• Pros:

• Extremely powerful way to dynamically retrieve
information about Classes by name

• Retains Object Oriented ideas

• Allows for meta-programs (like JUnit)

• Cons:

• Can break encapsulation

• Some anti-polymorphism ideas, e.g., checking an
actual class type instead of trusting hierarchy

Old-Fashioned
Generics

• public class ArrayList {
 void add(Object obj) { ... }
 Object get(int index) { ... }
}

• Any Object subclass works

• Runtime exception when typecasting fails

• We could use reflection to check all casts

Generic Types

• Declared with a generic placeholder
• public class Box<T> { ... }

• Box<String> b = new Box<String>();

• Box<Integer> b = new Box<Integer>();

• public class Pair<T,U> { ... }

• Pair<String, Date> p = new Pair<String, Date>();

Generic Methods
• We can use generic types in methods, which

get resolved dynamically when the method is
called

• This checks that the ArrayList and value are of
the appropriate type at compile time

public static <E> void fill(ArrayList<E> a, E value, int count)
{
 for (int i = 0; i < count; i++)
 a.add(value);
}

Type bounds
• Occasionally, generic types are too restrictive

• We can use a type bound to relax restrictions
 public static <E, F extends E> void append(ArrayList<E> a,
 ArrayList<F> b, int count)

 public static <E> void append(ArrayList<E> a,
 ArrayList<E> b, int count)
 {
 for (int i = 0; i < count && i < b.size(); i++)
 a.add(b.get(i));
 }

Wildcards

• Type bounds still require that the client
defines the generic types

• Sometimes this is undesirable, so we
can use wildcards instead

 public static <E> void append(ArrayList<E> a,
 ArrayList<? extends E> b, int count)
 {
 for (int i = 0; i < count && i < b.size(); i++)
 a.add(b.get(i));
 }

Type Erasure
• After javac checks correct type usage with

generics, it strips all types from the code into
raw types

• The resulting code is similar to old-
fashioned “generic” code, using Object
variables (or the most general superclass)

• This allows compatibility with older code

• but unfortunately leads to some limitations

Frameworks
• Sets of cooperating classes that implement

mechanisms essential for a particular
problem domain

• Application frameworks implement services
common to a certain type of application

• Programmers subclass some framework
classes and implement additional
functionality specific to the target application

Packages

• Typically, framework classes can be
stored in packages

• javax.swing.*, java.awt.*, java.applet.*

• Allows clients to import easily

Inversion of Control

• Most of the work is done by the
framework, as in the template method
and strategy patterns

• The programmer doesnʼt need to be
concerned with control flow, just the
specifics of the applications

Multithreading
• Modern computer programs perform various

calculations simultaneously

• Each parallel program unit is called a thread

• In most cases, threads are not actually run
in parallel, but by taking turns

• But the OS is responsible for the turn-taking;
we donʼt know its policy

Thread States

Reasons for block:
Sleep
Waiting for I/O
Waiting to acquire lock
Waiting for condition

Thread (abridged)
• void join() - Waits for this thread to die

• static void sleep(long millis) - Causes the currently
executing thread to sleep (temporarily cease execution)
for the specified number of milliseconds, subject to the
precision and accuracy of system timers and schedulers.

• void start() - Causes this thread to begin execution; the
Java Virtual Machine calls the run method of this thread.

• static void yield() - Causes the currently executing
thread object to temporarily pause and allow other
threads to execute.

Runnable

Object

Interrupting Threads
 public void run() {
	 try {
	 	 while(more_work_to_do) {
	 	 	 // do work
	 	 	 Thread.sleep(DELAY);
	 	 }
	 }
 catch(InterruptedException e)
 {
 }
	 // clean up
 }

• If you need to terminate a
thread, call
Thread.interrupt()

• Causes Thread.sleep() to
throw InterruptedException

• Your run method should
be structured to handle
interrupts cleanly

Joining Threads

• myThread.join() joins Thread myThread
with the current thread

• i.e., waits for myThread to finish its
run() method

Current thread

myThread

Locks
• We can use locks to fix race conditions

• Threads temporarily acquire ownership of locks

• Only one thread can own a lock at a time

• If a thread tries to acquire a lock but it is owned
by another, it waits

• When a lock owner releases the lock, all
waiting threads are notified

Lock Interface

• java.util.concurrent.locks package includes
the Lock interface

• Objects that implement Lock have
• lock() // prevent other threads from

 // locking this object

• unlock() // allow other threads to lock this

Condition Objects
• Each Lock can have any number of Condition objects
• Condition setNonEmpty = setLock.newCondition()

• setLock.lock()
while(set.isEmpty())
 setNonEmpty.await() // releases the lock

• Whenever the condition could have changed, call
setNonEmpty.signalAll()

• Unblock all waiting threads, but a thread must
reacquire the lock before returning from await

Dining Philosophers
• Example of deadlock when threads need two

or more locks (e.g., moving objects from list
to list)

• Each diner locks chopsticks then eats

• leftChopstick.lock()
rightChopstick.lock()
eat()
rightChopstick.unlock()
leftChopstick.unlock()

First Problem:
Starvation

• Since we donʼt know how OS will
schedule threads, two diners may never
get to eat

• ReentrantLock has a fairness flag that
makes sure locks are granted first-
come-first-served

• new ReentrantLock(true);

Second Problem:
Deadlock

• If all diner threads start simultaneously, we
can get stuck in a deadlock

• Each philosopher locks his left chopstick,
waits for right chopstick

• Even if we use conditions and release the
chopsticks, we could have livelock

• Infinite loop of simultaneously locking and
releasing the left chopsticks

Two Deadlock
Solutions

• Order the chopsticks; locks must be acquired in the
same order

• No circular deadlock, but now some threads have
higher priority

• Require master lock to lock any chopsticks

• master.lock()
leftChopstick.lock(); rightChopstick.lock();
master.unlock();
eat()
leftChopstick.unlock(); rightChopstick.unlock()

Lists
• An ordered series of objects

• Each object has a previous and next

• Except first has no prev.,
last has no next

• We can insert an object (at location k)

• We can remove an object (at location k)

• We can read an object (from location k)

ArrayList
• Essentially a wrapper for an array

• Store elements in array, but handles list
operations by shifting elements

• If array is full, copies into a new larger array

• O(1) get, O(N) insert/remove

• O(1) insert/remove at the end of list

h l l o

h e l l o

LinkedList
• Stores elements in Link objects

• Each link has reference to next (and prev)

• prev links only in doubly-linked list

• Navigate by following next() references

• O(1) insert/remove with reference

• But need O(N) to find (get) reference

0 1 2 3 4

Stacks and Queues
• Stack - Last in first out

• push() - add element to top of stack

• pop() - remove element from top

• Queue - First in first out

• enqueue (offer) - add element at back of line

• dequeue (poll) - remove from front of line

image from
http://bwog.net/2006/05/03/tray-spotting

Sets

• An unordered collection

• No duplicate entries

• We can insert an object

• We can check for an object – contains()

• We can remove an object

HashSet

• Uses hashCode() to index into an array

• Collisions occur when distinct elements
hash into the same index

• Collisions resolved by trying empty
spots in a systematic way

Maps

• Maps are collections of objects
"indexed" by other objects

• key types map to value types

• No duplicate keys, duplicate values
allowed

• aka "associative array"

HashMap

• Map<String, Double> costs =
 new HashMap<String, Double>();

• myMap.put("Big Mac", 2.99);

• myMap.get("Big Mac");

• index by the key's hashCode()

• but insert value instead of key

Sets, Maps,
Collections

• Recall that Set is a subinterface of
Collections that has no new methods

• HashMap doesn't implement Collection

• Has methods
• Set<K> keyset()

• Collection<V> values()

Sorted Map ADT

• Subtype of Map (can get value by key)
• SortedMap<K implements Comparable,V>

• SortedMap<K,V> subMap(K fromKey, K toKey)

• firstKey, lastKey, headMap, tailMap

TreeMap
• Implements SortedMap

• put(), get(), contains() cost O(log N)

• Uses an advanced binary search tree
called Red-Black Tree

• a balanced BST

• Slower than HashMap, but keys have
order

12

Binary Search Tree

• Tree nodes have left and right children

• Left children are less than parent,

• Right children are greater than parent

• At each node, O(1) comparison
determines which child to move to

• Depth of tree is the worst-case time for
each operation

7

5 10

2 6 15

Priority Queue ADT
• Stores elements by priority (serves as

the key)

• Not really a queue, but used in similar
applications

• add aka offer(E e)

• deleteMin aka poll()

• findMin aka peek()

Heaps
• Binary tree with heap order property:

keys of children greater than parentʼs

• Running time:

• O(log N) add,

• O(log N) deleteMin,

• O(1) findMin

2

5 10

7 6 1140

Prototype Pattern
• A system needs to create several kinds of objects whose classes

are not known when the system is built

• You donʼt want to require a separate class for each kind of object

• You want to avoid a separate hierarchy of classes whose
responsibility it is to create the objects

• Define a prototype interface common to all created objects

• Supply a prototype object for each kind of object that the system
creates

• Clone the prototype object whenever a new object of the given
kind is required

C
on

te
xt

So
lu

tio
n

Prototype Pattern

ADAPTER
• You want to use an existing adaptee class without

modifying it.

• The context in which you want to use the class
requires conformance to a target interface

• The target interface and the adaptee interface are
conceptually related

• Define an adapter class that implements the target
interface

• The adapter class holds a reference to the adaptee.
It translates target methods to adaptee methods

• The client wraps the adaptee into an adapter class
object

C
on

te
xt

So
lu

tio
n

Adapter Diagram

COMMAND
• You want to implement commands that behave like

objects, either because

• you want to store additional information with
commands,

• or you want to collect commands

• Define a command interface type with
a method to execute the command

• Supply methods in the command interface type to
manipulate the state of command objects

• Each concrete command class implements the
command interface type

• To invoke the command, call the execute method

C
on

te
xt

So
lu

tio
n

Command Example

• Client: painting program

• User performs various menu actions

• Multi-level undo needs to know action history

• Each type of action is a concrete
implementation of a Command interface

• Each action also implements an undo()
method

• Client program stores stack of commands;
pop().undo() to undo most recent command

FACTORY-METHOD
• A creator type creates objects of another product type

• Subclasses of the creator type need to create different
kinds of product objects

• Clients do not need to know the exact type of product
objects

• Define a creator type that expresses the commonality of all
creators

• Define a product type that expresses the commonality of all
products

• Define a factory method in the creator type. The factory
method yields a product object

• Each concrete creator class implements the factory method
so that it returns an object of a concrete product class

C
on

te
xt

So
lu

tio
n

Example Factory-Method

• Creator: Collection

• Concrete Creator: LinkedList

• factoryMethod(): iterator()

• Product: Iterator

• ConcreteProduct: LinkedListIterator

PROXY
• A real subject class provides a service that is

specified by an subject interface type

• There is a need to modify the service in order to
make it more versatile

• Neither the client nor the real subject should be
affected by the modification

• Define a proxy class that implements the subject
interface type. The proxy holds a reference to the real
subject

• The client uses a proxy object

• Each proxy method invokes the same method on the
real subject and provides the necessary modifications

C
on

te
xt

So
lu

tio
n

Proxy Diagram

SINGLETON
• All clients need to access a single shared

instance of a class

• You want to ensure that no additional
instances can be created accidentally

• Define a class with a private constructor

• The class constructs a single instance of itself

• Supply a static method that returns a
reference to the single instance

C
on

te
xt

So
lu

tio
n

VISITOR
• An object structure contains element classes of multiple

types, and you want to carry out operations that depend on
the object types

• The set of operations should be extensible over time

• The set of element classes is fixed

• Define a visitor interface that has methods for visiting
elements of each of the given types

• Each element class defines an accept method that invokes
the matching element visitation method on the visitor
parameter

• To implement an operation, define a class that implements
the visitor interface type and supplies the operation's action
for each element type

C
on

te
xt

So
lu

tio
n

Visitor Diagram

Double Dispatch
• This pattern uses polymorphism twice to make

code very general

• 1st, element.accept() calls Visitor method
based on type of element

• 2nd, the Visitor method performs operation
based on type of Visitor

• Both actions called through interfaces

• Concrete classes need not be known at runtime

Example Visitor

Double Dispatch in
FileSystemNode

SocketSocket

Sockets

• On each side of a TCP/IP connection, there is a socket

• Java lets us abstract away the details and work with
the sockets

• One end is a server and the other is a client

• Each socket has an InputStream and an OutputStream

Server Client

Socket API
• Common constructor:

new Socket(String host, int port)

• InputStream getInputStream()

• OutputStream getOutputStream()

• void close()

• IOExceptions everywhere; lots of try/catch
blocks in Socket code

• But how do we set up the host? ServerSocket

ServerSocket API
• Constructor:

new ServerSocket(int port)

• Socket accept() // Listens for a connection to be made and
accepts it

• close();

• Get Sockets using accept() and perform logic with them
using their InputStream and OutputStream

• Usually, wrap with new BufferedReader(socket.getInputStream())

• and new PrintWriter(socket.getOutputStream())

Why Study OOP and
Design?

• Writing a code is easy

• Understanding code is hard

• Good organization and design of
programs makes understanding easier

