
Object Oriented
Programming and Design

in Java

Session 24
Instructor: Bert Huang

Announcements
• Homework 4 solutions posted

• Homework 5 due next class:
Mon. May 3rd

• Mon. May 3rd: Final review

• Mon. May 10th, Final exam. 9 AM - noon

• closed-book/notes, focus on post-midterm
material, but material is inherently cumulative

Review

• Multithreading with Conditions review
(for the homework)

• Multithreading in the chat program

• Sending non-string data over the
network

• MVC over the network

Todayʼs Plan

• Recursion: Towers of Hanoi

• Some thoughts on

• COMS W1007, Object-oriented design in
general, Computer science

• Advice for future computer science study

Recursion

http://en.wikipedia.org/wiki/File:DrawingHands.jpg

• Recursion is self-
reference

• this is a self-reference

• Methods can call
themselves

• Allows for elegant
description of some
computations

Silly Recursion
Examples

• GNU stands for GNU is Not Unix

•

• This sentence is not true.

Concepts in Recursion
• Recursive routines (methods) solve a

problem by calling themselves on
subproblems

• e.g., factorial(k) = k * factorial(k-1)

• Recursive routines have a base case, which
is an input for which no recursion is
necessary

• e.g., factorial(0) = 1

Towers of Hanoi
• Three pegs, N discs fit on

pegs

• discs are of different sizes

• only smaller discs can be
placed on larger discs

• Task: move all discs from
one peg to another

A B C

A B C

• solveHanoi(Peg start, Peg end, Peg Middle, int N)

• Base case: move directly to end

• Otherwise,

• solveHanoi(start, middle, end, N-1) // move stack out of way

• solveHanoi(start, end, middle, 1) // move bottom disc to end

• solveHanoi(middle, start, end, N-1) // move stack onto bottom disc

Recursive Solution
S M E S M E

S M E S M E S M E S M E

Recursion

• Provides elegant descriptions of
algorithms

• May not always be the most efficient
implementation

• Trade off between elegance and
efficiency

Pre-Review Course
Wrap-Up

• Before the review, when we'll have tons
of material to cover in a quick class
session, we should reflect for a moment

• Take a step back, look at big picture

• What did we study?

• What should we take away from this
course?

Grades So Far

• Histogram of grades so far (hw1-hw3 and
midterm exam)

• Average: 79

• there will be a scaling of scores

20 40 60 80 100
0

5

10

15

Projected Score

of

 s
tu

de
nt

s

COMS W1007
• The second course for majors in computer

science.

• A rigorous treatment of object-oriented concepts

• using Java as an example language.

• Development of sound programming and design
skills, problem solving and modeling of real
world problems from science, engineering, and
economics using the object-oriented paradigm.

Core Courses of
CS@CU

• 1004 Intro -
a little programming, a little theory

• 1007 OOP and Design - lots of programming

• 3203 Discrete Math - lots of theory

• 3137 Data Structures and Algorithms -
lots of theory, a little programming

• 3157 Advanced Programming -
lots of programming

Object Oriented
Design

• will help tremendously in real
applications (on the job, side projects),

• will help with larger group projects,

• will help a little with many programming
assignments,

• will probably waste your time on some small programming exercises.

Java as an Example
Language

• Java is a nice programming language that
does a great job implementing object-oriented
ideas

• but it is not perfect

• Java is also not the best language to learn
because

• too much is built in (e.g., data structures)

• losing popularity in industry
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

What We Covered
• Programming style

• Classes and methods

• UML diagrams

• Programming by
contract:
preconditions,
postconditions and
invariants

• Designing interfaces

• Polymorphism

• Encapsulation

• Inheritance

• Design patterns

• Frameworks

• Java graphics and
user interface
programming

• Multithreading

Computer Science
• Much of CS is just organized common

sense

• CS ideas pop up in real life

• scheduling threads, scheduling work
between collaborators, multitasking

• “object-oriented” organization in
everyday writing

Why Study CS?

• It's fun to build things

• CS is one of the few scientific and
engineering disciplines where you can
actually build the things you study

• Lower-hanging fruit than many fields

• The world needs computer scientists
and engineers

Random Advice for
Future Classes

• Brush up on math

• Start early

• Write English (and code) clearly;

• pay attention to details such as
grammar, syntax, usage and spelling

• Go to class and use office hours

The Final Stretch

• Give Homework 5 your all, get help if
you need it; plenty of office hours left

• I'll post a sample final by Monday

• Come to the review with questions

• Don't let me and the TAs get away with
not teaching you something

