
Object Oriented
Programming and Design

in Java

Session 23
Instructor: Bert Huang

Announcements
• Homework 5 due last day of class:

Mon. May 3rd (in one week)

• Mon. May 3rd: Final review

• Mon. May 10th, Final exam. 9 AM - noon

• closed-book/notes, focus on post-
midterm material, but material is
inherently cumulative

Review

• VISITOR pattern

• Networking

• Socket and ServerSocket classes

• Simple text-chat example program

Todayʼs Plan

• Multithreading with Conditions review
(for the homework)

• Multithreading in the chat program

• Sending non-string data over the
network

• MVC over the network

Pigeon Threads
• Each pigeon should be controlled by its

own thread with infinite loop:

• find freshest food location

• block if no food

• move toward food (with randomness)

• remove food if touching food

• randomly get startled

Locks Review
• Each thread must lock() a Lock object before

doing tasks that can cause race conditions

• Once the lock is acquired, the thread may find it
cannot operate, e.g., the data structure it wants
to remove from is empty

• Then release the lock using a Condition object

• After the work is done, unlock() the Lock inside a
finally { } block to ensure that it is unlocked even
if an exception occurs

Condition Objects
• Each Lock can have any number of Condition objects
• Condition setNonEmpty = setLock.newCondition()

• setLock.lock()
while(set.isEmpty())
 setNonEmpty.await() // releases the lock

• Whenever the condition could have changed, call
setNonEmpty.signalAll()

• Unblock all waiting threads, but a thread must
reacquire the lock before returning from await

Pigeons and Food
P1

runnable
Food
empty

P1 has lock, finds Food empty.
Calls await(), which releases lock,

blocks

P2
runnable

P2 gets lock, finds Food empty.
Calls await(), which releases lock,

blocks

P1
blocked

Food
empty

P2
runnable

User adds food, calls signalAll(), waking
both P's. One gets the lock and checks

for food.

Food
full

P1
runnable

P2
runnable

Both P's blocked, waiting for signal
from Condition object

P1
blocked

Food
empty

P2
blocked

Helpful Links

• http://java.sun.com/docs/books/tutorial/
essential/concurrency/newlocks.html

• http://java.sun.com/javase/6/docs/api/
java/util/concurrent/locks/Condition.html

• http://java.sun.com/docs/books/tutorial/
essential/concurrency/index.html

Multithreading
• These programs work, but the conversation must

alternate back and forth between the client and server

• We need multithreading to allow remote messages to be
displayed immediately while waiting for System.in input

• ThreadedBufferedReaderPrinter - Runnable: continually
prints output from BufferedReader ASAP

• ThreadedChatServer - reads input from console and
sends it to client, starts TBRP thread

• ThreadedChatClient - reads input from console and
sends it to server, starts TBRP thread

public class ThreadedBufferedReaderPrinter implements Runnable {

	 /**
	 * Constructor takes the BufferedReader to print
	 * @param reader the BufferedReader to print
	 */
	 public ThreadedBufferedReaderPrinter(BufferedReader reader) {
	 	 this.reader = reader;
	 }

	 public void run() {
	 	 String line;
	 	 try {
	 	 	 while (!Thread.interrupted() &&
	 	 	 	 	 (line = reader.readLine()) != null) {
	 	 	 	 System.out.println(line);
	 	 	 }
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 }
	 }

	 BufferedReader reader;
}

ThreadedBufferedReaderPrinter

ThreadedChatClient
Main Loop

	 	 // hostname and port loaded

	 	 TextClient client = new TextClient(hostname, port);
	 	
	 	 // Start printing thread
	 	 Thread t = new Thread(new
	 	 	 	 ThreadedBufferedReaderPrinter(client.getReader()));
	 	 t.start();
	 	
	 	 // start chatting
	 	 while (client.isConnected()) {
	 	 	 try {
	 	 	 	 client.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }

ThreadedChatServer
Main Loop

	 	 // port loaded

	 	 TextServer server = new TextServer(port);
	 	 server.writeLine("Connected to server");
	 	
	 	 // Start printing thread
	 	 Thread t = new Thread(new
	 	 	 	 ThreadedBufferedReaderPrinter(server.getReader()));
	 	 t.start();
	 	
	 	 // start chatting
	 	 while (server.isConnected()) {
	 	 	 try {
	 	 	 	 server.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }

ThreadedMultiChatServer

• Handle multiple connections with threads

• while (true)
 accept connection
 start thread to handle connection

• Multiple clients can connect to the chat server

• Each client managed by a thread, when any client
sends a message, bounce to all connected clients

• Store client OutputStreams in a List, all client-
handling threads share the list

public class MultiChatHandler implements Runnable {

	 public MultiChatHandler(BufferedReader reader,
	 	 	 List<PrintWriter> outputs, InetAddress addr)
	 {
	 	 this.reader = reader;
	 	 this.outputs = outputs;
	 	 name = addr.toString();
	 	
	 	 printAll("A new client connected.");
	 }

	 public void run() {
	 	 while (!Thread.interrupted()) {
	 	 	 String line = null;
	 	 	 try {
	 	 	 	 line = reader.readLine();
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 	 System.out.println(line);
	 	 	 printAll(line);
	 	 }
	 }

	 /**
	 * Print something to all connected clients
	 * @param line
	 */
	 private void printAll(String line)
	 {
	 	 for (PrintWriter pw : outputs)
	 	 	 pw.println(name + ": " + line);
	 }

	 BufferedReader reader;
	 List<PrintWriter> outputs;
	 String name;
}

MultiChatHandler

public class MultiChatHandler implements Runnable {

	 public MultiChatHandler(BufferedReader reader,
	 	 	 List<PrintWriter> outputs, InetAddress addr)
	 {
	 	 this.reader = reader;
	 	 this.outputs = outputs;
	 	 name = addr.toString();
	 	
	 	 printAll("A new client connected.");
	 }

	 public void run() {
	 	 while (!Thread.interrupted()) {
	 	 	 String line = null;
	 	 	 try {
	 	 	 	 line = reader.readLine();
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 	 System.out.println(line);
	 	 	 printAll(line);
	 	 }
	 }

	 /**
	 * Print something to all connected clients
	 * @param line
	 */
	 private void printAll(String line)
	 {
	 	 for (PrintWriter pw : outputs)
	 	 	 pw.println(name + ": " + line);
	 }

	 BufferedReader reader;
	 List<PrintWriter> outputs;
	 String name;
}

MultiChatHandler

	 	 List<PrintWriter> allOut = new ArrayList<PrintWriter>();
	 	
	 	 while(true) {	 	 	
	 	 	 try {
	 	 	 	 Socket client = server.accept();
	 	 	 	 allOut.add(new PrintWriter(client.getOutputStream(), true));
	 	 	 	 BufferedReader in = new BufferedReader(
	 	 	 	 	 	 new InputStreamReader(client.getInputStream()));
	 	 	 	
	 	 	 	 Thread t = new Thread(new
	 	 	 	 	 	 MultiChatHandler(in, allOut, client.getInetAddress()));
	 	 	 	 t.start();
	 	 	 } catch (IOException e) {
	 	 	 	 System.err.println("Error connecting client.");
	 	 	 }
	 	 }

ThreadedMultiChatServer
Main Loop

Sending Objects
Through Streams

• Serialization allows us to send objects
through the streams

• Client and Server need to know how to
handle the object type

• Harder to debug than sending text, but
significant reduction in bandwidth usage

• also no need for translation code

Binary vs. Text
• An int is 32 bits, a char is 16 bits

• int can represent numbers up to
2147483647 using only 32 bits

• Sending as a String requires 10 chars,
160 bits

• Representing data as its raw binary
form saves significant space and time

Serialization Code
• Sending an object:
• out = new ObjectOutputStream(socket.getOutputStream());

• out.writeObject(myObject);

• Receiving object:
• in = new ObjectInputStream(socket.getInputStream());

• Object obj = in.readObject(); // or

• MyType obj = (MyType) in.readObject();

import java.io.*;
import java.net.*;
import java.util.*;

/**
 * Quick test of how to send objects
 * over a networked object stream
 * @author 1007
 *
 */
public class RandomListSender {
	 private static final int MAX = 10240;

	 public static void main(String [] args) {
	 	 Random random = new Random();		
	 	 try {
	 	 	 // open server and create output stream
	 	 	 ServerSocket server = new ServerSocket(10070);
	 	 	 Socket socket = server.accept();
	 	 	 ObjectOutputStream out = new ObjectOutputStream(
	 	 	 	 	 socket.getOutputStream());

	 	 	 // create the list to send
	 	 	 List<Integer> list = new LinkedList<Integer>();
	 	 	 for (int i = 0; i < MAX; i++)
	 	 	 	 list.add(random.nextInt());
	 	 	
	 	 	 out.writeObject(list);
	 	 	
	 	 	 out.close(); socket.close(); server.close();
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 }	
	 }
}

RandomListSender

import java.io.*;
import java.net.*;
import java.util.*;

/**
 * Quick test of how to receive an object through
 * a networked object stream
 * @author 1007
 */
public class ListReceiver {
	 public static void main(String [] args) {
	 	 try {
	 	 	 BufferedReader stdin = new BufferedReader(
	 	 	 	 	 new InputStreamReader(System.in));
	 	 	 System.out.println("Enter the hostname:");
	 	 	 String hostname = stdin.readLine();
	 	 	 System.out.println("Enter the port: ");
	 	 	 int port = Integer.parseInt(stdin.readLine());

	 	 	 // open socket
	 	 	 Socket socket = new Socket(hostname, port);
	 	 	 ObjectInputStream in = new ObjectInputStream(
	 	 	 	 	 socket.getInputStream());
	 	 	 // read object from stream
	 	 	 List<Integer> list =
	 	 	 	 (List<Integer>) in.readObject();

	 	 	 System.out.println(list);

	 	 	 socket.close();
	 	 } catch (Exception e) {
	 	 	 e.printStackTrace();
	 	 }
	 }

}

ListReceiver

MVC Over the
Network

• MVC is commonly used in networked
programs where the model and
controller are server-side

• Each client has a view of the model,
commands are sent to the server, which
affect the model

• Model tells all clients to update

Two Patterns in
Network Programming

• The Observer pattern fits naturally in network
code

• clients register as observers of data managed
by the server

• The server notifies clients to update

• The Proxy pattern is also a natural fit where
objects can be created that represent remote
objects locally

Reading
• Horstmann Ch. 10 for Patterns

• http://java.sun.com/docs/books/tutorial/
networking/sockets/index.html

• Optional: Ch. 22.1-22.4 in Big Java by
Horstmann if you still have it from 1004

• http://www.cs.columbia.edu/~bert/
courses/1007/code/networking/

