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Announcements
• Homework 5 due last day of class: 

Mon. May 3rd (in one week)

• Mon. May 3rd: Final review

• Mon. May 10th, Final exam. 9 AM - noon

• closed-book/notes, focus on post-
midterm material, but material is 
inherently cumulative



Review

• VISITOR pattern

• Networking

• Socket and ServerSocket classes

• Simple text-chat example program



Todayʼs Plan

• Multithreading with Conditions review 
(for the homework)

• Multithreading in the chat program

• Sending non-string data over the 
network

• MVC over the network



Pigeon Threads
• Each pigeon should be controlled by its 

own thread with infinite loop:

• find freshest food location 

• block if no food

• move toward food (with randomness)

• remove food if touching food

• randomly get startled



Locks Review
• Each thread must lock() a Lock object before 

doing tasks that can cause race conditions

• Once the lock is acquired, the thread may find it 
cannot operate, e.g., the data structure it wants 
to remove from is empty

• Then release the lock using a Condition object

• After the work is done, unlock() the Lock inside a 
finally { } block to ensure that it is unlocked even 
if an exception occurs



Condition Objects
• Each Lock can have any number of Condition objects
• Condition setNonEmpty = setLock.newCondition()

• setLock.lock()
while(set.isEmpty())
    setNonEmpty.await() // releases the lock

• Whenever the condition could have changed, call 
setNonEmpty.signalAll()

• Unblock all waiting threads, but a thread must 
reacquire the lock before returning from await
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Helpful Links

• http://java.sun.com/docs/books/tutorial/
essential/concurrency/newlocks.html

• http://java.sun.com/javase/6/docs/api/
java/util/concurrent/locks/Condition.html

• http://java.sun.com/docs/books/tutorial/
essential/concurrency/index.html



Multithreading
• These programs work, but the conversation must 

alternate back and forth between the client and server

• We need multithreading to allow remote messages to be 
displayed immediately while waiting for System.in input

• ThreadedBufferedReaderPrinter - Runnable: continually 
prints output from BufferedReader ASAP

• ThreadedChatServer - reads input from console and 
sends it to client, starts TBRP thread

• ThreadedChatClient - reads input from console and 
sends it to server, starts TBRP thread



public class ThreadedBufferedReaderPrinter implements Runnable {

	 /**
	  * Constructor takes the BufferedReader to print
	  * @param reader the BufferedReader to print
	  */
	 public ThreadedBufferedReaderPrinter(BufferedReader reader) {
	 	 this.reader = reader;
	 }

	 public void run() {
	 	 String line;
	 	 try {
	 	 	 while (!Thread.interrupted() && 
	 	 	 	 	 (line = reader.readLine()) != null) {
	 	 	 	 System.out.println(line);
	 	 	 }
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 }
	 }

	 BufferedReader reader;
}

ThreadedBufferedReaderPrinter



ThreadedChatClient
Main Loop

	 	 // hostname and port loaded

	 	 TextClient client = new TextClient(hostname, port);
	 	
	 	 // Start printing thread
	 	 Thread t = new Thread(new 
	 	 	 	 ThreadedBufferedReaderPrinter(client.getReader()));
	 	 t.start();
	 	
	 	 // start chatting
	 	 while (client.isConnected()) {
	 	 	 try {
	 	 	 	 client.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }



ThreadedChatServer
Main Loop

	 	 // port loaded

	 	 TextServer server = new TextServer(port);
	 	 server.writeLine("Connected to server");
	 	
	 	 // Start printing thread
	 	 Thread t = new Thread(new 
	 	 	 	 ThreadedBufferedReaderPrinter(server.getReader()));
	 	 t.start();
	 	
	 	 // start chatting
	 	 while (server.isConnected()) {
	 	 	 try {
	 	 	 	 server.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }



ThreadedMultiChatServer

• Handle multiple connections with threads

• while (true)
    accept connection
    start thread to handle connection

• Multiple clients can connect to the chat server

• Each client managed by a thread, when any client 
sends a message, bounce to all connected clients

• Store client OutputStreams in a List, all client-
handling threads share the list



public class MultiChatHandler implements Runnable {

	 public MultiChatHandler(BufferedReader reader, 
	 	 	 List<PrintWriter> outputs, InetAddress addr)
	 {
	 	 this.reader = reader;
	 	 this.outputs = outputs;
	 	 name = addr.toString();
	 	
	 	 printAll("A new client connected.");
	 }

	 public void run() {
	 	 while (!Thread.interrupted()) {
	 	 	 String line = null;
	 	 	 try {
	 	 	 	 line = reader.readLine();
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 	 System.out.println(line);
	 	 	 printAll(line);
	 	 }
	 }

	 /**
	  * Print something to all connected clients
	  * @param line
	  */
	 private void printAll(String line)
	 {
	 	 for (PrintWriter pw : outputs)
	 	 	 pw.println(name + ": " + line);
	 }

	 BufferedReader reader;
	 List<PrintWriter> outputs;
	 String name;
}

MultiChatHandler



public class MultiChatHandler implements Runnable {

	 public MultiChatHandler(BufferedReader reader, 
	 	 	 List<PrintWriter> outputs, InetAddress addr)
	 {
	 	 this.reader = reader;
	 	 this.outputs = outputs;
	 	 name = addr.toString();
	 	
	 	 printAll("A new client connected.");
	 }

	 public void run() {
	 	 while (!Thread.interrupted()) {
	 	 	 String line = null;
	 	 	 try {
	 	 	 	 line = reader.readLine();
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 	 System.out.println(line);
	 	 	 printAll(line);
	 	 }
	 }

	 /**
	  * Print something to all connected clients
	  * @param line
	  */
	 private void printAll(String line)
	 {
	 	 for (PrintWriter pw : outputs)
	 	 	 pw.println(name + ": " + line);
	 }

	 BufferedReader reader;
	 List<PrintWriter> outputs;
	 String name;
}

MultiChatHandler



	 	 List<PrintWriter> allOut = new ArrayList<PrintWriter>();
	 	
	 	 while(true) {	 	 	
	 	 	 try {
	 	 	 	 Socket client = server.accept();
	 	 	 	 allOut.add(new PrintWriter(client.getOutputStream(), true));
	 	 	 	 BufferedReader in = new BufferedReader(
	 	 	 	 	 	 new InputStreamReader(client.getInputStream()));
	 	 	 	
	 	 	 	 Thread t = new Thread(new 
	 	 	 	 	 	 MultiChatHandler(in, allOut, client.getInetAddress()));
	 	 	 	 t.start();
	 	 	 } catch (IOException e) {
	 	 	 	 System.err.println("Error connecting client.");
	 	 	 }
	 	 }

ThreadedMultiChatServer
Main Loop



Sending Objects 
Through Streams

• Serialization allows us to send objects 
through the streams

• Client and Server need to know how to 
handle the object type

• Harder to debug than sending text, but 
significant reduction in bandwidth usage

• also no need for translation code



Binary vs. Text
• An int is 32 bits, a char is 16 bits

• int can represent numbers up to 
2147483647 using only 32 bits

• Sending as a String requires 10 chars, 
160 bits

• Representing data as its raw binary 
form saves significant space and time



Serialization Code
• Sending an object:
• out = new ObjectOutputStream(socket.getOutputStream());

• out.writeObject(myObject);

• Receiving object:
• in = new ObjectInputStream(socket.getInputStream());

• Object obj = in.readObject(); // or

• MyType obj = (MyType) in.readObject();



import java.io.*;
import java.net.*;
import java.util.*;

/**
 * Quick test of how to send objects
 * over a networked object stream
 * @author 1007
 *
 */
public class RandomListSender {
	 private static final int MAX = 10240;

	 public static void main(String [] args) {
	 	 Random random = new Random();		
	 	 try {
	 	 	 // open server and create output stream
	 	 	 ServerSocket server = new ServerSocket(10070);
	 	 	 Socket socket = server.accept();
	 	 	 ObjectOutputStream out = new ObjectOutputStream(
	 	 	 	 	 socket.getOutputStream());

	 	 	 // create the list to send 
	 	 	 List<Integer> list = new LinkedList<Integer>();
	 	 	 for (int i = 0; i < MAX; i++)
	 	 	 	 list.add(random.nextInt());
	 	 	
	 	 	 out.writeObject(list);
	 	 	
	 	 	 out.close(); socket.close(); server.close();
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 }	
	 }
}

RandomListSender



import java.io.*;
import java.net.*;
import java.util.*;

/**
 * Quick test of how to receive an object through 
 * a networked object stream
 * @author 1007
 */
public class ListReceiver {
	 public static void main(String [] args) {
	 	 try {
	 	 	 BufferedReader stdin = new BufferedReader(
	 	 	 	 	 new InputStreamReader(System.in));
	 	 	 System.out.println("Enter the hostname:");
	 	 	 String hostname = stdin.readLine();
	 	 	 System.out.println("Enter the port: ");
	 	 	 int port = Integer.parseInt(stdin.readLine());

	 	 	 // open socket
	 	 	 Socket socket = new Socket(hostname, port);
	 	 	 ObjectInputStream in = new ObjectInputStream(
	 	 	 	 	 socket.getInputStream());
	 	 	 // read object from stream
	 	 	 List<Integer> list = 
	 	 	 	 (List<Integer>) in.readObject();

	 	 	 System.out.println(list);

	 	 	 socket.close();
	 	 } catch (Exception e) {
	 	 	 e.printStackTrace();
	 	 } 
	 }

}

ListReceiver



MVC Over the 
Network

• MVC is commonly used in networked 
programs where the model and 
controller are server-side

• Each client has a view of the model, 
commands are sent to the server, which 
affect the model

• Model tells all clients to update



Two Patterns in 
Network Programming

• The Observer pattern fits naturally in network 
code

• clients register as observers of data managed 
by the server

• The server notifies clients to update

• The Proxy pattern is also a natural fit where 
objects can be created that represent remote 
objects locally



Reading
• Horstmann Ch. 10 for Patterns

• http://java.sun.com/docs/books/tutorial/
networking/sockets/index.html

• Optional: Ch. 22.1-22.4 in Big Java by 
Horstmann if you still have it from 1004

• http://www.cs.columbia.edu/~bert/
courses/1007/code/networking/


