
Object Oriented
Programming and Design

in Java

Session 22
Instructor: Bert Huang

Announcements
• Homework 5 due last day of class:

Mon. May 3rd

• Mon. May 3rd: Final review

• Mon. May 10th, Final exam. 9 AM - noon

• closed-book/notes, focus on post-
midterm material, but material is
inherently cumulative

Review
• Threadsafe wrappers for Collections

• Leftover Design Patterns

• ADAPTER

• COMMAND

• FACTORY METHOD

• PROXY

• SINGLETON

• VISITOR

Todayʼs Plan

• VISITOR pattern

• Networking

• Socket and ServerSocket classes

• Simple text-chat example program

Programming Patterns
MVC

COMPOSITE

DECORATOR

STRATEGY

TEMPLATE-METHOD

ADAPTER

COMMAND

FACTORY-METHOD

PROXY

SINGLETON

VISITOR

Pattern: Visitor
• You're building a hierarchy of classes, and you

want to allow new functionality

• but don't want to have clients modify code

• STRATEGY is inadequate if new functionality
depends on concrete types

• e.g., file system: DirectoryNode and FileNode

• want to allow client to add operations, e.g.,
printing operation, disk-space computation

VISITOR
• An object structure contains element classes of multiple

types, and you want to carry out operations that depend on
the object types

• The set of operations should be extensible over time

• The set of element classes is fixed

• Define a visitor interface that has methods for visiting
elements of each of the given types

• Each element class defines an accept method that invokes
the matching element visitation method on the visitor
parameter

• To implement an operation, define a class that implements
the visitor interface type and supplies the operation's action
for each element type

C
on
te
xt

So
lu
tio
n

Visitor Diagram

Double Dispatch
• This pattern uses polymorphism twice to make

code very general

• 1st, element.accept() calls Visitor method
based on type of element

• 2nd, the Visitor method performs operation
based on type of Visitor

• Both actions called through interfaces

• Concrete classes need not be known at runtime

Example Visitor

Double Dispatch in
FileSystemNode

Programming Patterns
MVC

COMPOSITE

DECORATOR

STRATEGY

TEMPLATE-METHOD

ADAPTER

COMMAND

FACTORY-METHOD

PROXY

SINGLETON

VISITOR

Networking
• Modern computing is done over the Internet

• This includes, but is far more general than the
World Wide Web and websites transferred over http

• Data over the internet is divided into two types of
raw information: application data and network
protocol data

• Network protocol data tells the routers, switches
and computers where the data came from, where
it's headed, how to check for errors, lost data, etc.

The Internet Protocol
(IP)

• Computers on the Internet have IP addresses, which are
four byte numbers, like 128.59.48.24 (www.columbia.edu)

• Domain Name Servers (DNS) map these IP addresses to
easier-to-remember names

• IP transmits data in small chunks known as packets, which
contain validation information so the receiving computer can
tell if the data was corrupted

• If data is corrupted or lost, IP doesn't say what to do about it,
which is why many Internet communications also use
Transmission Control Protocol (TCP)

TCP/IP
• Transmission Control Protocol retries packet transmission

if there is a failure

• Programs can abstract away transmission details using
TCP/IP

• The protocol is responsible for reliable transmission (or
elegantly notifies of an error)

• A lot of details, but the important pieces of a TCP/IP
packet are:

• Sender's IP address and port

• Receiver's IP address and port

Ports
• Since most computers only have one or two network

connections, must distinguish between messages
from different programs

• TCP/IP packets have 16-bit number (0, 65535) called
a port, indicates what program should handle it

• 80 is the Web, 22 is ssh, 993 is IMAP/SSL

• Ports 0-1023 restricted, but we can use the larger
numbers for our programs

SocketSocket

Sockets

• On each side of a TCP/IP connection, there is a socket

• Java lets us abstract away the details and work with
the sockets

• One end is a server and the other is a client

• Each socket has an InputStream and an OutputStream

Server Client

Socket API
• Common constructor:

new Socket(String host, int port)

• InputStream getInputStream()

• OutputStream getOutputStream()

• void close()

• IOExceptions everywhere; lots of try/catch
blocks in Socket code

• But how do we set up the host? ServerSocket

ServerSocket API
• Constructor:

new ServerSocket(int port)

• Socket accept() // Listens for a connection to be made and
accepts it

• close();

• Get Sockets using accept() and perform logic with them
using their InputStream and OutputStream

• Usually, wrap with new BufferedReader(socket.getInputStream())

• and new PrintWriter(socket.getOutputStream())

Simple Two-Way Text
Chatting

• TextServer - establishes connection, responsible
for exception handling

• TextClient - establishes connection, responsible
for exception handling

• TwoWayChatServer - reads input from console
and sends it to client, prints messages from client

• TwoWayChatClient - reads input from console
and sends it to server, prints messages from
server

TextServer.java

/**
 * An attempt to encapsulate and abstract away some
 * exception handling involved with a Socket server.
 * @author 1007
 */
public class TextServer {
	 /**
	 * Constructor takes a port number and
	 * opens a single-connection server on that port
	 * @param port port to listen on
	 */
	 public TextServer(int port)
	 {
	 	 try {
	 	 	 server = new ServerSocket(port);

	 	 	 clientSocket = server.accept();
	 	 	 out = new PrintWriter(
	 	 	 	 	 clientSocket.getOutputStream(), true);
	 	 	 in = new BufferedReader(
	 	 	 	 	 new InputStreamReader(clientSocket.getInputStream()));

	 	 } catch (IOException e) {
	 	 	 System.err.println("Error opening server streams");
	 	 	 System.exit(-1);
	 	 }
	 }

	 /**
	 * Reads a line sent by the client
	 * @return the line sent by client
	 */
	 public String readLine()
	 {
	 	 try {
	 	 	 return in.readLine();
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 	 return null;
	 	 }
	 }

	 /**
	 * Writes a line to the client
	 * @param line String to send to client
	 */
	 public void writeLine(String line) { out.println(line); }
	
	 /**
	 * Accessor for BufferedReader
	 * @return BufferedReader representing input from client
	 */
	 public BufferedReader getReader() { return in; };
	
	 /**
	 * @return whether server is open
	 */
	 public boolean isConnected() { return !server.isClosed(); }

	 /**
	 * Closes the connection to client
	 */
	 public void closeClient() {
	 	 try {
	 	 	 clientSocket.close();
	 	 } catch (IOException e) { e.printStackTrace(); }
	 }

	 /**
	 * Closes the server
	 */
	 public void closeServer() {
	 	 try {
	 	 	 server.close();
	 	 } catch (IOException e) { e.printStackTrace(); }
	 }

	 private PrintWriter out;
	 private BufferedReader in;
	 private ServerSocket server;
	 private Socket clientSocket;
}

/**
 * An attempt to encapsulate and abstract away some
 * exception handling involved with a Socket server.
 * @author 1007
 */
public class TextServer {
	 /**
	 * Constructor takes a port number and
	 * opens a single-connection server on that port
	 * @param port port to listen on
	 */
	 public TextServer(int port)
	 {
	 	 try {
	 	 	 server = new ServerSocket(port);

	 	 	 clientSocket = server.accept();
	 	 	 out = new PrintWriter(
	 	 	 	 	 clientSocket.getOutputStream(), true);
	 	 	 in = new BufferedReader(
	 	 	 	 	 new InputStreamReader(clientSocket.getInputStream()));

	 	 } catch (IOException e) {
	 	 	 System.err.println("Error opening server streams");
	 	 	 System.exit(-1);
	 	 }
	 }

	 /**
	 * Reads a line sent by the client
	 * @return the line sent by client
	 */
	 public String readLine()
	 {
	 	 try {
	 	 	 return in.readLine();
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 	 return null;
	 	 }
	 }

	 /**
	 * Writes a line to the client
	 * @param line String to send to client
	 */
	 public void writeLine(String line) { out.println(line); }
	
	 /**
	 * Accessor for BufferedReader
	 * @return BufferedReader representing input from client
	 */
	 public BufferedReader getReader() { return in; };
	
	 /**
	 * @return whether server is open
	 */
	 public boolean isConnected() { return !server.isClosed(); }

	 /**
	 * Closes the connection to client
	 */
	 public void closeClient() {
	 	 try {
	 	 	 clientSocket.close();
	 	 } catch (IOException e) { e.printStackTrace(); }
	 }

	 /**
	 * Closes the server
	 */
	 public void closeServer() {
	 	 try {
	 	 	 server.close();
	 	 } catch (IOException e) { e.printStackTrace(); }
	 }

	 private PrintWriter out;
	 private BufferedReader in;
	 private ServerSocket server;
	 private Socket clientSocket;
}

/**
 * An attempt to encapsulate and abstract away some
 * exception handling involved with a Socket server.
 * @author 1007
 */
public class TextServer {
	 /**
	 * Constructor takes a port number and
	 * opens a single-connection server on that port
	 * @param port port to listen on
	 */
	 public TextServer(int port)
	 {
	 	 try {
	 	 	 server = new ServerSocket(port);

	 	 	 clientSocket = server.accept();
	 	 	 out = new PrintWriter(
	 	 	 	 	 clientSocket.getOutputStream(), true);
	 	 	 in = new BufferedReader(
	 	 	 	 	 new InputStreamReader(clientSocket.getInputStream()));

	 	 } catch (IOException e) {
	 	 	 System.err.println("Error opening server streams");
	 	 	 System.exit(-1);
	 	 }
	 }

	 /**
	 * Reads a line sent by the client
	 * @return the line sent by client
	 */
	 public String readLine()
	 {
	 	 try {
	 	 	 return in.readLine();
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 	 return null;
	 	 }
	 }

	 /**
	 * Writes a line to the client
	 * @param line String to send to client
	 */
	 public void writeLine(String line) { out.println(line); }
	
	 /**
	 * Accessor for BufferedReader
	 * @return BufferedReader representing input from client
	 */
	 public BufferedReader getReader() { return in; };
	
	 /**
	 * @return whether server is open
	 */
	 public boolean isConnected() { return !server.isClosed(); }

	 /**
	 * Closes the connection to client
	 */
	 public void closeClient() {
	 	 try {
	 	 	 clientSocket.close();
	 	 } catch (IOException e) { e.printStackTrace(); }
	 }

	 /**
	 * Closes the server
	 */
	 public void closeServer() {
	 	 try {
	 	 	 server.close();
	 	 } catch (IOException e) { e.printStackTrace(); }
	 }

	 private PrintWriter out;
	 private BufferedReader in;
	 private ServerSocket server;
	 private Socket clientSocket;
}

TextClient.java
Constructor

	 public TextClient(String hostname, int port)
	 {
	 	 try {
	 	 	 clientSocket = new Socket(hostname, port);

	 	 	 out = new PrintWriter(
	 	 	 	 	 clientSocket.getOutputStream(), true);
	 	 	 in = new BufferedReader(
	 	 	 	 	 new InputStreamReader(clientSocket.getInputStream()));

	 	 } catch (IOException e) {
	 	 	 System.err.println("Error opening server streams");
	 	 	 System.exit(-1);
	 	 }
	 }

TwoWayChatServer.java
Main Loop

	 	 TextServer server = new TextServer(port);
	 	 server.writeLine("Connected to server");
	 	
	 	 // start back-and-forth chatting
	 	 String line;
	 	 while((line = server.readLine()) != null) {
	 	 	 System.out.println(line);
	 	 	 try {
	 	 	 	 server.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }

TwoWayChatClient.java
Main Loop

	 	 TextClient client = new TextClient(hostname, port);

	 	 // start back-and-forth chatting
	 	 String line;
	 	 while ((line = client.readLine()) != null)
	 	 {
	 	 	 System.out.println(line);
	 	 	 try {
	 	 	 	 client.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }
	 	
	 	 client.close();

Multithreading
• These programs work, but the conversation must

alternate back and forth between the client and server

• We need multithreading to allow remote messages to be
displayed immediately while waiting for System.in input

• ThreadedBufferedReaderPrinter - Runnable: continually
prints output from BufferedReader ASAP

• ThreadedChatServer - reads input from console and
sends it to client, starts TBRP thread

• ThreadedChatClient - reads input from console and
sends it to server, starts TBRP thread

public class ThreadedBufferedReaderPrinter implements Runnable {

	 /**
	 * Constructor takes the BufferedReader to print
	 * @param reader the BufferedReader to print
	 */
	 public ThreadedBufferedReaderPrinter(BufferedReader reader) {
	 	 this.reader = reader;
	 }

	 public void run() {
	 	 String line;
	 	 try {
	 	 	 while (!Thread.interrupted() &&
	 	 	 	 	 (line = reader.readLine()) != null) {
	 	 	 	 System.out.println(line);
	 	 	 }
	 	 } catch (IOException e) {
	 	 	 e.printStackTrace();
	 	 }
	 }

	 BufferedReader reader;
}

ThreadedBufferedReaderPrinter

ThreadedChatClient
Main Loop

	 	 // hostname and port loaded

	 	 TextClient client = new TextClient(hostname, port);
	 	
	 	 // Start printing thread
	 	 Thread t = new Thread(new
	 	 	 	 ThreadedBufferedReaderPrinter(client.getReader()));
	 	 t.start();
	 	
	 	 // start chatting
	 	 while (client.isConnected()) {
	 	 	 try {
	 	 	 	 client.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }

ThreadedChatServer
Main Loop

	 	 // port loaded

	 	 TextServer server = new TextServer(port);
	 	 server.writeLine("Connected to server");
	 	
	 	 // Start printing thread
	 	 Thread t = new Thread(new
	 	 	 	 ThreadedBufferedReaderPrinter(server.getReader()));
	 	 t.start();
	 	
	 	 // start chatting
	 	 while (server.isConnected()) {
	 	 	 try {
	 	 	 	 server.writeLine(stdin.readLine());
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 }

ThreadedMultiChatServer

• Handle multiple connections with threads

• while (true)
 accept connection
 start thread to handle connection

• Multiple clients can connect to the chat server

• Each client managed by a thread, when any client
sends a message, bounce to all connected clients

• Store client OutputStreams in a List, all client-
handling threads share the list

public class MultiChatHandler implements Runnable {

	 public MultiChatHandler(BufferedReader reader,
	 	 	 List<PrintWriter> outputs, InetAddress addr)
	 {
	 	 this.reader = reader;
	 	 this.outputs = outputs;
	 	 name = addr.toString();
	 	
	 	 printAll("A new client connected.");
	 }

	 public void run() {
	 	 while (!Thread.interrupted()) {
	 	 	 String line = null;
	 	 	 try {
	 	 	 	 line = reader.readLine();
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 	 System.out.println(line);
	 	 	 printAll(line);
	 	 }
	 }

	 /**
	 * Print something to all connected clients
	 * @param line
	 */
	 private void printAll(String line)
	 {
	 	 for (PrintWriter pw : outputs)
	 	 	 pw.println(name + ": " + line);
	 }

	 BufferedReader reader;
	 List<PrintWriter> outputs;
	 String name;
}

MultiChatHandler

public class MultiChatHandler implements Runnable {

	 public MultiChatHandler(BufferedReader reader,
	 	 	 List<PrintWriter> outputs, InetAddress addr)
	 {
	 	 this.reader = reader;
	 	 this.outputs = outputs;
	 	 name = addr.toString();
	 	
	 	 printAll("A new client connected.");
	 }

	 public void run() {
	 	 while (!Thread.interrupted()) {
	 	 	 String line = null;
	 	 	 try {
	 	 	 	 line = reader.readLine();
	 	 	 } catch (IOException e) {
	 	 	 	 e.printStackTrace();
	 	 	 }
	 	 	 System.out.println(line);
	 	 	 printAll(line);
	 	 }
	 }

	 /**
	 * Print something to all connected clients
	 * @param line
	 */
	 private void printAll(String line)
	 {
	 	 for (PrintWriter pw : outputs)
	 	 	 pw.println(name + ": " + line);
	 }

	 BufferedReader reader;
	 List<PrintWriter> outputs;
	 String name;
}

MultiChatHandler

	 	 List<PrintWriter> allOut = new ArrayList<PrintWriter>();
	 	
	 	 while(true) {	 	 	
	 	 	 try {
	 	 	 	 Socket client = server.accept();
	 	 	 	 allOut.add(new PrintWriter(client.getOutputStream(), true));
	 	 	 	 BufferedReader in = new BufferedReader(
	 	 	 	 	 	 new InputStreamReader(client.getInputStream()));
	 	 	 	
	 	 	 	 Thread t = new Thread(new
	 	 	 	 	 	 MultiChatHandler(in, allOut, client.getInetAddress()));
	 	 	 	 t.start();
	 	 	 } catch (IOException e) {
	 	 	 	 System.err.println("Error connecting client.");
	 	 	 }
	 	 }

ThreadedMultiChatServer
Main Loop

Reading
• Horstmann Ch. 10 for Patterns

• http://java.sun.com/docs/books/tutorial/
networking/sockets/index.html

• Optional: Ch. 22.1-22.4 in Big Java by
Horstmann if you still have it from 1004

• http://www.cs.columbia.edu/~bert/
courses/1007/code/networking/

