Object Oriented
Programming and Design
In Java

Session 22
Instructor: Bert Huang

Announcements

e Homework 5 due last day of class:
Mon. May 3rd

e Mon. May 3rd: Final review
e Mon. May 10th, Final exam. 9 AM - noon

e closed-book/notes, focus on post-
midterm material, but material is
inherently cumulative

Review

e Threadsafe wrappers for Collections
o [eftover Design Patterns

e ADAPTER

e COMMAND

e FACTORY METHOD

e PROXY

e SINGLETON

e VISITOR

Today’s Plan

VISITOR pattern
Networking
Socket and ServerSocket classes

Simple text-chat example program

Programming Patterns

e VISITOR
COMPOSITE
PROXY
DECORATOR
SINGLETON ADAPTER
COMMAND
STRATEGY
FACTORY-METHOD

TEMPLATE-METHOD

Pattern: Visitor

You're building a hierarchy of classes, and you
want to allow new functionality

but don't want to have clients modify code

STRATEGY is inadequate if new functionality
depends on concrete types

e.g., file system: DirectoryNode and FileNode

e want to allow client to add operations, e.g.,
printing operation, disk-space computation

Context

VISITOR

An object structure contains element classes of multiple
types, and you want to carry out operations that depend on
the object types

The set of operations should be extensible over time

The set of element classes is fixed

Solution

Define a visitor interface that has methods for visiting
elements of each of the given types

Each element class defines an accept method that invokes
the matching element visitation method on the visitor
parameter

To implement an operation, define a class that implements
the visitor interface type and supplies the operation's action
for each element type

v «interface»
«Interface» Visitor
Element (.
visitConcreteElement1()
accept() visitConcreteElement2()
A visitConcreteElement3()
i 7Y
E i
E i i i
: ! : !
Concrete Concrete Concrete :
Element1 Element2 Element3 Concrete
Visitor
accept() accept() accept()
Calls /', /
visitConcreteElementl() / 7

1 /

'
/’ 4
N ’

! '

F '

C‘] l;’, |] n
viqslthonc reteElement?2 (l;] ,," VI S Ito r D I ag ra m

/
/
/
/
L

Calls
visitConcreteElement3()

Double Dispatch

e This pattern uses polymorphism twice to make
code very general

e 1st, element.accept() calls Visitor method
based on type of element

e 2nd, the Visitor method performs operation
based on type of Visitor

e Both actions called through interfaces

e (Concrete classes need not be known at runtime

Example Visitor

«interface» :
Fi|eSystem FlleSYStem
Node R Visitor
accept() visitFileNode()
A visitDirectoryNode()
FileNode Directory
Node
accept()
i accept()
Calls
visitFileNode .
Calls
visitDirectoryNode

Double Dispatch in
FileSystemNode

client : Directory . Prlnt
Node Visitor
| 1 |
— | |
accept, | :
\ visitDirectoryNode, <!
‘\ \‘\ |
\ T \ [
“ | \ |
— \ | ‘\ |
| ‘\ I ' |
Polymorphic Polymorphic
selection of selection of
node type visitor type

Programming Patterns

e VISITOR
COMPOSITE
PROXY
DECORATOR
SINGLETON ADAPTER
COMMAND
STRATEGY
FACTORY-METHOD

TEMPLATE-METHOD

Networking

Modern computing is done over the Internet

This includes, but is far more general than the
World Wide Web and websites transferred over http

Data over the internet is divided into two types of
raw information: application data and network
protocol data

Network protocol data tells the routers, switches
and computers where the data came from, where
it's headed, how to check for errors, lost data, etc.

The Internet Protocol
(IP)

Computers on the Internet have IP addresses, which are
four byte numbers, like 128.59.48.24 (www.columbia.edu)

Domain Name Servers (DNS) map these IP addresses to
easier-to-remember names

IP transmits data in small chunks known as packets, which
contain validation information so the receiving computer can
tell if the data was corrupted

If data is corrupted or lost, IP doesn't say what to do about it,
which is why many Internet communications also use
Transmission Control Protocol (TCP)

TCP/IP

Transmission Control Protocol retries packet transmission
if there is a failure

Programs can abstract away transmission details using
TCP/IP

The protocol is responsible for reliable transmission (or
elegantly notifies of an error)

A lot of details, but the important pieces of a TCP/IP
packet are:

e Sender's IP address and port

e Receiver's IP address and port

Ports

Since most computers only have one or two network
connections, must distinguish between messages
from different programs

TCP/IP packets have 16-bit number (0, 65535) called
a port, indicates what program should handle it

80 is the Web, 22 is ssh, 993 is IMAP/SSL

Ports 0-1023 restricted, but we can use the larger
numbers for our programs

Sockets

Socket " Socket

I

e (On each side of a TCP/IP connection, there is a socket

e Java lets us abstract away the details and work with
the sockets

e (One endis a server and the other is a client

e Each socket has an InputStream and an OutputStream

Socket API

Common constructor:
new Socket(String host, int port)

InputStream getInputStream()
OutputStream getOutputStream()

void close()

|OEXxceptions everywhere; lots of try/catch
blocks in Socket code

But how do we set up the host? ServerSocket

ServerSocket API

Constructor:
new ServerSocket(int port)

Socket accept() // Listens for a connection to be made and
accepts it

close();

Get Sockets using accept() and perform logic with them
using their InputStream and OutputStream

Usually, wrap with new BufferedReader(socket.getInputStream())

® and new PrintWriter(socket.getOutputStream())

Simple Two-Way Text
Chatting

e TextServer - establishes connection, responsible
for exception handling

o TextClient - establishes connection, responsible
for exception handling

e TwoWayChatServer - reads input from console
and sends it to client, prints messages from client

e TwoWayChatClient - reads input from console
and sends it to server, prints messages from
server

public class TextServer {
/**
* (Constructor takes a port number and
* opens a single-connection server on that port

* port port to listen on
*/

public TextServer(int port) Tetherve rjava

{

try {
server = new ServerSocket(port);

clientSocket = server.accept();
out = new PrintWriter(
clientSocket.getOutputStream(), true);
in = new BufferedReader(
new InputStreamReader(clientSocket.getInputStream()));

} catch (IOException e) {
System.err.println("Error opening server streams");
System.ex1t(-1);
¥
ks

/**

/**
* Reads a line sent by the client

* the 1ine sent by client
*/
public String readlLine()
{
try {

return in.readlLine();

} catch (IOException e) {
e.printStackTrace();
return null;

h
}
/**
* Writes a line to the client
* line String to send to client
*/

public void writelLine(String line) { out.println(line); }

/**
* Accessor for BufferedReader
* BufferedReader representing input from client

*/

/**
* Closes the connection to client
*/
public void closeClient() {
try {
clientSocket.close();
} catch (I0Exception e) { e.printStackTrace(); }

}

/**
* Closes the server
*/
public void closeServer() {
try {
server.close();
} catch (I0Exception e) { e.printStackTrace(); }

}

private PrintWriter out;
private BufferedReader 1in;
private ServerSocket server;
private Socket clientSocket;

TextClient.java
Constructor

public TextClient(String hostname, int port)

{

try {
clientSocket = new Socket(Chostname, port);

out = new PrintWriter(
clientSocket.getOutputStream(), true);
in = new BufferedReader(
new InputStreamReader(clientSocket.getInputStream()));

} catch (IOException e) {
System.err.println("Error opening server streams");
System.ex1t(-1);
Iy
}

TwoWayChatServer.java
Main Loop

TextServer server = new TextServer(port);
server.writeLine("Connected to server");

// start back-and-forth chatting
String line;
while((line = server.readLine()) !'= null) {
System.out.println(line);
try {
server.writeLine(stdin.readlLine());
} catch (IOException e) {
e.printStackTrace();

¥
¥

TwoWayChatClient.java
Main Loop

TextClient client = new TextClient(Chostname, port);

// start back-and-forth chatting
String line;
while ((line = client.readLine()) != null)
{
System.out.println(line);
try {
client.writeLine(stdin.readlLine());
} catch (I0Exception e) {
e.printStackTrace();
¥
¥

client.close();

Multithreading

These programs work, but the conversation must
alternate back and forth between the client and server

We need multithreading to allow remote messages to be
displayed immediately while waiting for System.in input

ThreadedBufferedReaderPrinter - Runnable: continually
prints output from BufferedReader ASAP

ThreadedChatServer - reads input from console and
sends it to client, starts TBRP thread

ThreadedChatClient - reads input from console and
sends it to server, starts TBRP thread

public class ThreadedBufferedReaderPrinter implements Runnable {

/**
* Constructor takes the BufferedReader to print
* reader the BufferedReader to print
*/

public ThreadedBufferedReaderPrinter(BufferedReader reader) {
this.reader = reader;

}

public void run() {

String line;

try {
while (!Thread.interrupted() &&

(1ine = reader.readLine()) != null) {
System.out.println(line);

¥

} catch (I0Exception e) {
e.printStackTrace();

}

}
ThreadedBufferedReaderPrinter

Buf feredReader reader;

1

ThreadedChatClient
Main Loop

// hostname and port loaded
TextClient client = new TextClient(hostname, port);

// Start printing thread

Thread t = new Thread(new
ThreadedBufferedReaderPrinter(client.getReader()));

t.start(Q);

// start chatting
while (client.isConnected()) {
try {
client.writeLine(stdin.readlLine());
} catch (I0Exception e) {
e.printStackTrace();

¥
}

ThreadedChatServer
Main Loop

// port loaded

TextServer server = new TextServer(port);
server.writelLine("Connected to server");

// Start printing thread

Thread t = new Thread(new
ThreadedBufferedReaderPrinter(server.getReader()));

t.start(Q);

// start chatting
while (server.isConnected()) {
try {
server.writelLine(stdin.readLine());
} catch (IOException e) {
e.printStackTrace();

¥
¥

ThreadedMultiChatServer

¢ Handle multiple connections with threads

e while (true)
accept connection
start thread to handle connection

e Multiple clients can connect to the chat server

e Each client managed by a thread, when any client
sends a message, bounce to all connected clients

e Store client OutputStreams in a List, all client-
handling threads share the list

public class MultiChatHandler implements Runnable {

public MultiChatHandler(BufferedReader reader,
List<PrintWriter> outputs, InetAddress addr)
{
this.reader = reader;
this.outputs = outputs;
name = addr.toString();

printAlL("A new client connected.");

h

public void run() {
while (!Thread.interrupted()) {
String line = null;
try {
line = reader.readlLine();
} catch (I0Exception e) {
e.printStackTrace();

¥
System.out.println(line);

printAll(line); MUIthhatHandler

CT y L
line = reader.readLine();

} catch (I0Exception e) {
e.printStackTrace();

¥
System.out.println(line);

printAll(line); MUIt'ChatHandIer

}

}

/**
* Print something to all connected clients
* line
*/
private void printAl1(String line)
{
for (PrintWriter pw : outputs)
pw.printlnCname + ": " + 1line);

}

BufferedReader reader;
List<PrintWriter> outputs;
String name;

ThreadedMultiChatServer
Main Loop

List<PrintWriter> allOut = new ArrayList<PrintWriter>();

while(true) {
try {
Socket client = server.accept();
allOut.add(new PrintWriter(client.getOutputStream(), true));
BufferedReader in = new BufferedReader(
new InputStreamReader(client.getInputStream()));

Thread t = new Thread(new
MultiChatHandler(in, allOut, client.getInetAddress()));
t.start(Q);
} catch (IOException e) {
System.err.println("Error connecting client.");

}
h

Reading

Horstmann Ch. 10 for Patterns

http://java.sun.com/docs/books/tutorial/
networking/sockets/index.html

Optional: Ch. 22.1-22.4 in Big Java by
Horstmann if you still have it from 1004

http://www.cs.columbia.edu/~bert/
courses/1007/code/networking/

