Object Oriented
Programming and Design
In Java

Session 21
Instructor: Bert Huang

Announcements

Homework 4 due now

Homework 5 out now. Due last day of class:
Mon. May 3rd

Mon. May 3rd: Final review
Mon. May 10th, Final exam. 9 AM - noon

e closed-book/notes, focus on post-midterm
material, but material is inherently cumulative

Review

e Applications of queues, stacks, maps, sets
e (Queues/stacks: producer/consumer, method calls
e Maps and Sets: word search, word count
e Binary search trees:
e SortedMap, SortedSet interfaces
e O(log N) for add/get, fast range search
e Priority Queues (Heaps)
e O(1) findMin, O(log N) insert and deleteMin

Today's Plan

e Threadsafe wrappers for Collections

Leftover Design Patterns

ADAPTER
COMMAND
FACTORY METHOD
PROXY
SINGLETON
VISITOR

lists

hashmap

BSIl

heap

Comparison

Insert findMin

get

get range

O(N)

o) O(N) o) O(N)
O(log N + k)
O('Og N) O(|°g N) O(|Og N) k = # elements in
O(log N) o(l) O(N) O(N)

Producer Consumer
with Priority Queues

¢ Natural extension to using a simple queue,
assign priority to all requests

e Consumer grabs the highest (lowest) priority
element

1]
1l

|service
e [s it worth the log N overhead? Depends on —

application

¢ |f consuming is very fast, skip the fancy
prioritization and just do it fast

| requestsl—>

Thread Safe Data
Structures

e Since data structures are designed to be
extremely fast, thread safety is omitted
to avoid overhead

e Java has interface ConcurrentMap,
implemented by ConcurrentHashMap

e and interface BlockingQueue,
implemented by ArrayBlockingQueue,
LinkedBlockingQueue

Threadsafe Wrappers

e (Collections has static method
Collection synchronizedCollection(Collection ¢)

e returns synchronized wrapper of ¢
e synchronizedSet, List, Map, SortedMap
e Returns decorated object of anonymous class

e Each unsafe method is wrapped with an
object lock

Programming Patterns

e VISITOR
COMPOSITE
PROXY
DECORATOR
SINGLETON ADAPTER
COMMAND
STRATEGY
FACTORY-METHOD

TEMPLATE-METHOD

Pattern: Adapter

e When reusing code, we often find
interfaces that do the same thing

e Maybe uses different method
names, parameter order, etc

e Don't rewrite any concrete
classes, create an adapter

¢ implement one interface using
the other

ADAPTER

You want to use an existing adaptee class without
modifying it.

=
X
g ¢ The context in which you want to use the class
8 requires conformance to a target interface
e The target interface and the adaptee interface are
conceptually related
- ° Define an adapter class that implements the target
0 interface
)
—g e The adapter class holds a reference to the adaptee.
95! It translates target methods to adaptee methods

The client wraps the adaptee into an adapter class
object

Adapter Diagram

Client

—————————————————————

-

”
-

Calls
adapteeMethod()

«interface»
Target

targetMethod()

A

Adapter

Adaptee

targetMethod()

adapteeMethod()

/**
An adapter that turns an icon into a JComponent.
*/
public class IconAdapter extends JComponent {
/**
Constructs a JComponent that displays a given 1icon.

i1con the icon to display
*/

public IconAdapter(Icon icon) {

this.icon = icon; Method Summary

} int|getIconHeight ()
Returns the icon's height.

int|getIconWidth()
public void paintComponent(Graphics g) { Returns the icon's width.

icon.paintIcon(this, g, @0, @); M g—:;“ﬁg:“éc°fi‘:zni“l:t "

} Draw the icon at the specified
location.

public Dimension getPreferredSize() {
return new Dimension(icon.getIconWidth(),
icon.getIconHeight());

}

private Icon 1icon;

Pattern: Command

e |tis sometimes useful to be able to
manipulate commands as objects

e command history, undo, macros, etc.

e states for commands, e.g., estimated-
duration, lcon for GUI, etc.

e EXxecuting commands by just calling
methods does not allow us to do these

COMMAND

You want to implement commands that behave like
objects, either because

=
X
9 e you want to store additional information with
5 commands,
O

e or you want to collect commands

e Define a command interface type with

a method to execute the command
c
.8 e Supply methods in the command interface type to
=) manipulate the state of command objects
0
Vo)

Each concrete command class implements the
command interface type

To invoke the command, call the execute method

Command Example

«interface»
, Command
Client’ p-rrmreresesmemnne=s
] . . execute()
e (Client: painting program 5
e User performs various menu actions

e Multi-level undo needs to know action history o cee
Command

e Each type of action is a concrete s

implementation of a Command interface execute()

e Each action also implements an undo()
method

e (Client program stores stack of commands;
pop().undo() to undo most recent command

Pattern: Factory
Method

list.iterator() returns an lterator object

If we know concrete class of list, could use
Iterator iter = new LinkedListIterator(list)

but that's not polymorphic; client shouldn't
need to know concrete classes

The iterator() method is a factory method

Context

FACTORY-METHOD

A creator type creates objects of another product type

Subclasses of the creator type need to create different
kinds of product objects

Clients do not need to know the exact type of product
objects

Solution

Define a creator type that expresses the commonality of all
creators

Define a product type that expresses the commonality of all
products

Define a factory method in the creator type. The factory
method yields a product object

Each concrete creator class implements the factory method
so that it returns an object of a concrete product class

Example Factory-Method

«interface»
Creator

factoryMethod()

«interface»
Product

:;

Concrete

Creator: Collection | ©reator

Concrete Creator: LinkedList
factoryMethod(): iterator()

Product: Iterator

ConcreteProduct: LinkedListlterator

T

Concrete
Product

Pattern: Proxy

A proxy acts on behalf of someone else

In the proxy pattern, an object represents another
object,

IS treated exactly as the represented object

but modifies the under-the-hood behavior in some
way

A Proxy is like a Decorator you never notice

e.g., threadsafe wrappers could use the Proxy
pattern

Context

PROXY

A real subject class provides a service that is
specified by an subject interface type

There is a need to modify the service in order to
make it more versatile

Neither the client nor the real subject should be
affected by the modification

Solution

Define a proxy class that implements the subject
interface type. The proxy holds a reference to the real
subject

The client uses a proxy object

Each proxy method invokes the same method on the
real subject and provides the necessary modifications

Proxy Diagram

« inte rface »

Client l--cmmmommoooe Subject

request()

Proxy RealSubject

request() request()

/
/

Invokes same
method on

subject

Proxy Example

e Normally, you can add an lcon to a Label
JLabel label = new JLabel(new Imagelcon(imageName))

* |oads the image on construction, may waste memory/
time

e Use proxy instead: label = new JLabel(new ImageProxy
(imageName))

e |ImageProxy doesn't load the image until it is painted

public void paintIcon(Component c, Graphics g, int x, int y)

{
1f (image == null) image = new ImageIcon(nhame);
image.paintIcon(c, g, X, Y);

h

Pattern: Singleton

e \We often have classes that never need
more than one instance

® ¢.g., a utility class that everyone shares

e One approach is to have the class have
only static methods,

e pbut a static class can't implement an
interface, can't be passed as a parameter

Context

SINGLETON

All clients need to access a single shared
instance of a class

You want to ensure that no additional
iInstances can be created accidentally

Solution

Define a class with a private constructor
The class constructs a single instance of itself

Supply a static method that returns a
reference to the single instance

Example Singleton

e Pseudo-random number generators

e | often find my code riddled with redundant
Random objects;
| really only need one

public class SingleRandom

{
private SingleRandom() { generator = new Random(); }
public void setSeed(int seed) { generator.setSeed(seed); }
public int nextInt() { return generator.nextInt(); }
public static SingleRandom getInstance() { return instance; }
private Random generator;
private static SingleRandom instance = new SingleRandom();

Pattern: Visitor

You're building a hierarchy of classes, and you
want to allow new functionality

but don't want to have clients modify code

STRATEGY is inadequate if new functionality
depends on concrete types

e.g., file system: DirectoryNode and FileNode

e want to allow client to add operations, e.g.,
printing operation, disk-space computation

Context

VISITOR

An object structure contains element classes of multiple
types, and you want to carry out operations that depend on
the object types

The set of operations should be extensible over time

The set of element classes is fixed

Solution

Define a visitor interface that has methods for visiting
elements of each of the given types

Each element class defines an accept method that invokes
the matching element visitation method on the visitor
parameter

To implement an operation, define a class that implements
the visitor interface type and supplies the operation's action
for each element type

v «interface»
«Interface» Visitor
Element (.
visitConcreteElement1()
accept() visitConcreteElement2()
A visitConcreteElement3()
i 7Y
E i
E i i i
: ! : !
Concrete Concrete Concrete :
Element1 Element2 Element3 Concrete
Visitor
accept() accept() accept()
Calls /', /
visitConcreteElementl() / 7

1 /

'
/’ 4
N ’

! '

F '

C‘] l;’, |] n
viqslthonc reteElement?2 (l;] ,," VI S Ito r D I ag ra m

/
/
/
/
L

Calls
visitConcreteElement3()

Double Dispatch

e This pattern uses polymorphism twice to make
code very general

e 1st, element.accept() calls Visitor method
based on type of element

e 2nd, the Visitor method performs operation
based on type of Visitor

e Both actions called through interfaces

e (Concrete classes need not be known at runtime

Example Visitor

«interface» :
Fi|eSystem FlleSYStem
Node R Visitor
accept() visitFileNode()
A visitDirectoryNode()
FileNode Directory
Node
accept()
i accept()
Calls
visitFileNode .
Calls
visitDirectoryNode

Double Dispatch in
FileSystemNode

client : Directory . Prlnt
Node Visitor
| 1 |
— | |
accept, | :
\ visitDirectoryNode, <!
‘\ \‘\ |
\ T \ [
“ | \ |
— \ | ‘\ |
| ‘\ I ' |
Polymorphic Polymorphic
selection of selection of
node type visitor type

Programming Patterns

e VISITOR
COMPOSITE
PROXY
DECORATOR
SINGLETON ADAPTER
COMMAND
STRATEGY
FACTORY-METHOD

TEMPLATE-METHOD

Reading

e Horstmann Ch. 10

