
Object Oriented
Programming and Design

in Java

Session 21
Instructor: Bert Huang

Announcements
• Homework 4 due now

• Homework 5 out now. Due last day of class:
Mon. May 3rd

• Mon. May 3rd: Final review

• Mon. May 10th, Final exam. 9 AM - noon

• closed-book/notes, focus on post-midterm
material, but material is inherently cumulative

Review
• Applications of queues, stacks, maps, sets

• Queues/stacks: producer/consumer, method calls

• Maps and Sets: word search, word count

• Binary search trees:

• SortedMap, SortedSet interfaces

• O(log N) for add/get, fast range search

• Priority Queues (Heaps)

• O(1) findMin, O(log N) insert and deleteMin

Today's Plan
• Threadsafe wrappers for Collections

• Leftover Design Patterns

• ADAPTER

• COMMAND

• FACTORY METHOD

• PROXY

• SINGLETON

• VISITOR

Comparison
insert findMin get get range

lists

hashmap

BST

heap

O(1) O(N) O(N) O(N)

O(1) O(N) O(1) O(N)

O(log N) O(log N) O(log N)
O(log N + k)

k = # elements in
range

O(log N) O(1) O(N) O(N)

Producer Consumer
with Priority Queues

• Natural extension to using a simple queue,
assign priority to all requests

• Consumer grabs the highest (lowest) priority
element

• Is it worth the log N overhead? Depends on
application

• If consuming is very fast, skip the fancy
prioritization and just do it fast

requests

service

Thread Safe Data
Structures

• Since data structures are designed to be
extremely fast, thread safety is omitted
to avoid overhead

• Java has interface ConcurrentMap,
implemented by ConcurrentHashMap

• and interface BlockingQueue,
implemented by ArrayBlockingQueue,
LinkedBlockingQueue

Threadsafe Wrappers
• Collections has static method

Collection synchronizedCollection(Collection c)

• returns synchronized wrapper of c

• synchronizedSet, List, Map, SortedMap

• Returns decorated object of anonymous class

• Each unsafe method is wrapped with an
object lock

Programming Patterns
MVC

COMPOSITE

DECORATOR

STRATEGY

TEMPLATE-METHOD

ADAPTER

COMMAND

FACTORY-METHOD

PROXY

SINGLETON

VISITOR

Pattern: Adapter
• When reusing code, we often find

interfaces that do the same thing

• Maybe uses different method
names, parameter order, etc

• Don't rewrite any concrete
classes, create an adapter

• implement one interface using
the other

ADAPTER
• You want to use an existing adaptee class without

modifying it.

• The context in which you want to use the class
requires conformance to a target interface

• The target interface and the adaptee interface are
conceptually related

• Define an adapter class that implements the target
interface

• The adapter class holds a reference to the adaptee.
It translates target methods to adaptee methods

• The client wraps the adaptee into an adapter class
object

C
on

te
xt

So
lu

tio
n

Adapter Diagram

import java.awt.*;
import javax.swing.*;

/**
 An adapter that turns an icon into a JComponent.
*/
public class IconAdapter extends JComponent {
 /**
 Constructs a JComponent that displays a given icon.
 @param icon the icon to display
 */
 public IconAdapter(Icon icon) {
 this.icon = icon;
 }

 public void paintComponent(Graphics g) {
 icon.paintIcon(this, g, 0, 0);
 }

 public Dimension getPreferredSize() {
 return new Dimension(icon.getIconWidth(),
 icon.getIconHeight());
 }

 private Icon icon;
}

Pattern: Command
• It is sometimes useful to be able to

manipulate commands as objects

• command history, undo, macros, etc.

• states for commands, e.g., estimated-
duration, Icon for GUI, etc.

• Executing commands by just calling
methods does not allow us to do these

COMMAND
• You want to implement commands that behave like

objects, either because

• you want to store additional information with
commands,

• or you want to collect commands

• Define a command interface type with
a method to execute the command

• Supply methods in the command interface type to
manipulate the state of command objects

• Each concrete command class implements the
command interface type

• To invoke the command, call the execute method

C
on

te
xt

So
lu

tio
n

Command Example

• Client: painting program

• User performs various menu actions

• Multi-level undo needs to know action history

• Each type of action is a concrete
implementation of a Command interface

• Each action also implements an undo()
method

• Client program stores stack of commands;
pop().undo() to undo most recent command

Pattern: Factory
Method

• list.iterator() returns an Iterator object

• If we know concrete class of list, could use
Iterator iter = new LinkedListIterator(list)

• but that's not polymorphic; client shouldn't
need to know concrete classes

• The iterator() method is a factory method

FACTORY-METHOD
• A creator type creates objects of another product type

• Subclasses of the creator type need to create different
kinds of product objects

• Clients do not need to know the exact type of product
objects

• Define a creator type that expresses the commonality of all
creators

• Define a product type that expresses the commonality of all
products

• Define a factory method in the creator type. The factory
method yields a product object

• Each concrete creator class implements the factory method
so that it returns an object of a concrete product class

C
on

te
xt

So
lu

tio
n

Example Factory-Method

• Creator: Collection

• Concrete Creator: LinkedList

• factoryMethod(): iterator()

• Product: Iterator

• ConcreteProduct: LinkedListIterator

Pattern: Proxy
• A proxy acts on behalf of someone else

• In the proxy pattern, an object represents another
object,

• is treated exactly as the represented object

• but modifies the under-the-hood behavior in some
way

• A Proxy is like a Decorator you never notice

• e.g., threadsafe wrappers could use the Proxy
pattern

PROXY
• A real subject class provides a service that is

specified by an subject interface type

• There is a need to modify the service in order to
make it more versatile

• Neither the client nor the real subject should be
affected by the modification

• Define a proxy class that implements the subject
interface type. The proxy holds a reference to the real
subject

• The client uses a proxy object

• Each proxy method invokes the same method on the
real subject and provides the necessary modifications

C
on

te
xt

So
lu

tio
n

Proxy Diagram

Proxy Example
• Normally, you can add an Icon to a Label

JLabel label = new JLabel(new ImageIcon(imageName))

• loads the image on construction, may waste memory/
time

• Use proxy instead: label = new JLabel(new ImageProxy
(imageName))

• ImageProxy doesn't load the image until it is painted
public void paintIcon(Component c, Graphics g, int x, int y)
{
 if (image == null) image = new ImageIcon(name);
 image.paintIcon(c, g, x, y);
}

Pattern: Singleton
• We often have classes that never need

more than one instance

• e.g., a utility class that everyone shares

• One approach is to have the class have
only static methods,

• but a static class can't implement an
interface, can't be passed as a parameter

SINGLETON
• All clients need to access a single shared

instance of a class

• You want to ensure that no additional
instances can be created accidentally

• Define a class with a private constructor

• The class constructs a single instance of itself

• Supply a static method that returns a
reference to the single instance

C
on

te
xt

So
lu

tio
n

Example Singleton
• Pseudo-random number generators

• I often find my code riddled with redundant
Random objects;
I really only need one

public class SingleRandom
{
 private SingleRandom() { generator = new Random(); }
 public void setSeed(int seed) { generator.setSeed(seed); }
 public int nextInt() { return generator.nextInt(); }
 public static SingleRandom getInstance() { return instance; }
 private Random generator;
 private static SingleRandom instance = new SingleRandom();
}

Pattern: Visitor
• You're building a hierarchy of classes, and you

want to allow new functionality

• but don't want to have clients modify code

• STRATEGY is inadequate if new functionality
depends on concrete types

• e.g., file system: DirectoryNode and FileNode

• want to allow client to add operations, e.g.,
printing operation, disk-space computation

VISITOR
• An object structure contains element classes of multiple

types, and you want to carry out operations that depend on
the object types

• The set of operations should be extensible over time

• The set of element classes is fixed

• Define a visitor interface that has methods for visiting
elements of each of the given types

• Each element class defines an accept method that invokes
the matching element visitation method on the visitor
parameter

• To implement an operation, define a class that implements
the visitor interface type and supplies the operation's action
for each element type

C
on

te
xt

So
lu

tio
n

Visitor Diagram

Double Dispatch
• This pattern uses polymorphism twice to make

code very general

• 1st, element.accept() calls Visitor method
based on type of element

• 2nd, the Visitor method performs operation
based on type of Visitor

• Both actions called through interfaces

• Concrete classes need not be known at runtime

Example Visitor

Double Dispatch in
FileSystemNode

Programming Patterns
MVC

COMPOSITE

DECORATOR

STRATEGY

TEMPLATE-METHOD

ADAPTER

COMMAND

FACTORY-METHOD

PROXY

SINGLETON

VISITOR

Reading

• Horstmann Ch. 10

