
Object Oriented
Programming and Design

in Java

Session 20
Instructor: Bert Huang

Announcements

• Homework 4 due Monday, Apr. 19th (next
class)

Review

• Homework tips

• Data Structures

• Lists, Stacks, Queues

• Sets, HashSet

• Maps, HashMap

Todayʼs Plan

• Applications of queues, stacks, maps,
sets

• Binary search trees

• Priority Queues (Heaps)

Summary
insert insert at remove remove at contains

lists

stacks/
queues

set

map

O(1) O(N) O(1) O(N) O(N)

O(1) X O(1) X X

O(1) X O(1) X O(1)

O(1) ~O(1) O(1) ~O(1) O(1)

Data Type Applications

• Abstract Data Types allow well-
organized design of data applications

• Design in terms of ADTs, most
environments provide efficient
implementations of standard ADTs

• Know which ADTs and data structures
apply in different situations

Producer Consumer
Queues

• Web server receives http requests from
browsers, puts request in queue

• Other threads remove from the queue,
serve web pages to browsers

• Using a queue guarantees O(1) operations
and first-come-first-serve scheduling

requests service

Deques
• A deque is a queue and a stack

• Insert and remove from either head or tail

• addFirst(e), addLast(e), getFirst(), getLast()

• ArrayDeque<E> implements Queue<E>

• LinkedList<E> implements Queue<E> and
Deque<E>

Stacks for Method
Calls

• When method is called, parameters and variables in its
scope are pushed

• Once it is evaluated, it is popped

• Nested method calls populate a stack
System.out.println(scanner.next())

• Too many nested calls causes stack overflow, JVM out of
memory
public void runForever() {
 runForever();
}

next()

println()

runForever()
runForever()
runForever()
runForever()
runForever()
runForever()

Web Search by Word
Sets

• Documents can be represented
as sets of keywords

• Search for keywords by calling
contains() on each document

• contains() and adding new
document must be fast

• search O(1) per document

• new document O(k) for k words

cat

fish

pet

fish

rice

chopsticks

chopsticks

deadlock

threads

Word Counting with
Maps

• Natural extension to storing documents as
word sets: word counts

• Each word maps to an integer count
HashMap<String, Integer>

• Scan through document, increment count for
each word

• “to be or not to be”

• O(1) per word in document

to be or not
1 1 1 1+1 +1

Sorted Map ADT

• Subtype of Map (can get value by key)
• SortedMap<K implements Comparable,V>

• SortedMap<K,V> subMap(K fromKey, K toKey)

• firstKey, lastKey, headMap, tailMap

TreeMap
• Implements SortedMap

• put(), get(), contains() cost O(log N)

• Uses an advanced binary search tree
called Red-Black Tree

• a balanced BST

• Slower than HashMap, but keys have
order

12

Binary Search Tree

• Tree nodes have left and right children

• Left children are less than parent,

• Right children are greater than parent

• At each node, O(1) comparison
determines which child to move to

• Depth of tree is the worst-case time for
each operation

7

5 10

2 6 15

Due Dates with BST

• A calendar or to-do list program may
store due dates in a BST

• Allows efficient search for date ranges

• Whatʼs due from today to Monday?

• Show me things due after Monday

Priority Queue ADT
• Stores elements by priority (serves as

the key)

• Not really a queue, but used in similar
applications

• add aka offer(E e)

• deleteMin aka poll()

• findMin aka peek()

Heaps
• Binary tree with heap order property:

keys of children greater than parentʼs

• Running time:

• O(log N) add,

• O(log N) deleteMin,

• O(1) findMin

2

5 10

7 6 1140

Comparison
insert findMin get get range

lists

hashmap

BST

heap

O(1) O(N) O(N) X

O(1) O(N) O(1) X

O(log N) O(log N) O(log N) O(N)

O(log N) O(1) O(N) X

Producer Consumer
with Priority Queues

• Natural extension to using a simple queue,
assign priority to all requests

• Consumer grabs the highest (lowest) priority
element

• Is it worth the log N overhead? Depends on
application

• If consuming is very fast, skip the fancy
prioritization and just do it fast

requests

service

Thread Safe Data
Structures

• Since data structures are designed to be
extremely fast, thread safety is omitted
to avoid overhead

• Java has interface ConcurrentMap,
implemented by ConcurrentHashMap

• and interface BlockingQueue,
implemented by ArrayBlockingQueue,
LinkedBlockingQueue

Threadsafe Wrappers
• Collections has static method

Collection synchronizedCollection(Collection c)

• returns synchronized wrapper of c

• synchronizedSet, List, Map, SortedMap

• Returns decorated object of anonymous class

• Each unsafe method is wrapped with an
object lock

Reading

• http://java.sun.com/docs/books/tutorial/
collections/implementations/index.html

