
Object Oriented
Programming and Design

in Java

Session 2
Instructor: Bert Huang

Announcements
• TA: Yipeng Huang, yh2315, Mon 4-6

• OH on MICE clarification

• Next Monday's class canceled for
Distinguished Lecture: Feb 1, 11 AM
Davis Auditorium.

• Course survey due by next class for 1
point extra credit

Schedule

Sun Mon Tue Wed Thu Fri

John 1-3

Class
11-12:15

Bert 2-4

Yipeng
4-6

Lauren
5:30-7:30

Class
11-12:15

Three Rivers in Machine Learning: Data, Computation and Risk

John Lafferty
Carnegie Mellon University

Abstract:

Machine learning is a confluence of computer science and statistics that is
empowering technologies such as search engines, robotics, and personalized
medicine. Fundamentally, the goal of machine learning is to develop computer
programs that predict well, according to some measure of risk or accuracy.
The predictions should get better as more historical data become available.
The field is developing interesting and useful frameworks for building such
programs, which often demand large computational resources. Theoretical
analyses are also being advanced to help understand the tradeoffs between
computation, data, and risk that are inherent in statistical learning. Two types
of results have been studied: the consistency and scaling behavior of specific
convex optimization procedures, which have polynomial computational
efficiency, and lower bounds on any statistically efficient procedure, without
regard to computational cost. This talk will give a survey of some of these
developments, with a focus on structured learning problems for graphs and
shared learning tasks in high dimensions.

Review

• Course information

• Prerequisites

• Assignments and expectations

• Course goals

Today's Plan:
Java Review

• basic syntax, javadoc, primitive types,
references, importing packages,
exceptions, input, Arrays, ArrayLists,
declaration keywords, code style

• CUNIX and Eclipse demo

Compiling Java

Java Code
(text format) javac Java

program

• Java is a compiled language

• Your code tells the compiler what
machine code to produce

public class SyntaxTester {
	 public static void main(String [] args)
	 {
	 	 for (int i = 0; i < MAX; i++)
	 	 {
	 	 	 System.out.println("Iteration " + i);
	 	 	 if (i == 1)
	 	 	 {
	 	 	 	 System.out.println("i is 1");
	 	 	 }
	 	 	 else
	 	 	 {
	 	 	 	 System.out.println("i is not 1");
	 	 	 }
	 	 }
	 }
	 final static int MAX = 5;
}

Javadoc

• Automated documentation generation

• Comment each class, each public
method, its parameters and return value

• javadoc converts comments into
organized html website

/**
 * This class doesn't do anything,
 * but demonstrates javadoc.
 * @author Bert Huang
 */
public class Nothing {
	 /**
	 * This method is commented with javadoc
	 * @param x Whatever I write here is
	 * added to the documentation
	 * @param y Looking like a fool with
	 * your pants on the ground.
	 * @return If this were an actual method,
	 * this should say something more helpful.
	 */
	 public int doNothing(int x, int y)
	 {
	 	 return 1000;
	 }
}

Primitive Types
• int, long, short, byte

• char
• boolean

• double, float

• Java allocates memory for each
variable of these types

Object References

• All other variables are references to
objects

• Running a constructor allocates
memory for the variable

• String word;

• word = new String();
word

word

Primitive Type
Wrappers

• You can use primitive types as objects
by using wrappers:

• Integer, Byte, Short, Long

• Double, Float

• Character

• Boolean

Reference
Headaches to Avoid
• MyObject A = new MyObject();

MyObject B = A;

• String C = "hello";
String D = "hello";
C == D?

• Use foo.equals(bar) instead

A

B

C "hello"

D "hello"

Scope

i = 5;
for (int i = 0; i < 10; i++)
{
 System.out.println(i);
}

System.out.println(i);

Scope
public class Example
{
 public Example(String name)
 {
 System.out.println(name);
 this.name = name;
 }
 private String name;
}

Importing Packages

• To import built in (or 3rd party)
packages: import java.util.Random;

• Adds classes in package to your space

• You can always refer to classes by their
full name:
java.util.Random rand = new java.util.Random();

Scanners for Input

• import java.util.Scanner;

• Scanner in = new Scanner(System.in);

• in.nextLine(); // returns String until \n
in.nextInt(); // reads next token as int
in.nextDouble(); // double
in.useDelimiter(","); // sets token separator to ,
in.next(); // returns next token

• new Scanner(new File("fileToRead.txt"));

Handling Exceptions
• Methods can throw
Exceptions to
indicate runtime
errors

• Methods are declared
to throw exceptions,
and javac complains
if you don't handle
them

• try
{
 // something
 // dangerous
}
catch (Exception e)
{
 // handle e
}

Throwing Exceptions
• public void myMethod() throws IOException

{
 // do something that might throw IOException

}

•Transfers responsibility to caller of
myMethod()

•Try to handle exception asap

Arrays
• Objects can be grouped into arrays of

similar objects

• int [] A = new int[5];

• A[5] causes IndexOutOfBoundsException

0 1 2 3 4

A[0] A[1] A[2] A[3] A[4]

ArrayLists

• ArrayList<String> list = new ArrayList<String>();

• No fixed size, grows as needed

• Class in < > indicates what is stored in
the ArrayList

• list.add("blah");
list.add("blah", 4);

Enhanced For Loop

• For each element of array or ArrayList
• Arraylist<String> list;

//... put stuff into list ...

for (String current : list)
{
 // do something with current String
}

Declaration Keywords
• public - Available to all other objects

• private - Available only to this object

• static - Exists independently of
instantiation. Behaves the same for
each instance of the class.

• final - Will never change. Use this for
constants

Code Style
• Consistency is most important; easily find code

• Some good suggestions by Horstmann:
http://www.horstmann.com/bigj/style.html

• Some highlights:

• lowercase variable and methods

• class names Uppercase

• No magic numbers, use ALL_CAPS final constants

• Put spaces around all binary operations (==, +, >)

• Space after every comma

CUNIX and Eclipse

Reading

• Horstmann Ch. 2 for next two sessions

• Cunix info page
http://www.cs.columbia.edu/~bert/
courses/1007/cunix.html

