
Object Oriented
Programming and Design

in Java

Session 19
Instructor: Bert Huang

Announcements

• Homework 4 due MONDAY. Apr. 19

• No multithreading in programming part

Review
• Deadlocks and the Dining Philosophers

Problem

• More on Threads in Java

• Thread, Runnable, Object javadoc

• Keywords synchronized and volatile

• ReentrantLock

• Programming by contract and threads

Todayʼs Plan

• Homework tips

• Data Structures

• Lists, Stacks, Queues

• Sets, HashSet

• Maps, HashMap

Homework Tips:
Main Program

• Remember that the framework will do a huge portion of the
work; make a non-animating version first

• Create the button that toggles the timer on and off. Test the
timer and the toggle button by having actionListener print to
console

• Each time Timer ticks, compute the new position and velocity
for each node

• Force = k * lengthOfEdge, Accel. = Force / Mass

• Velocity = Velocity + Accel., Position = oldPosition + Velocity

• After moving nodes, call repaint() on the GraphFrame

Homework Tips

• Serialization will disconnect animation logic (Timer etc)
because framework encapsulates Graph

• Main can connect Graph and Timer to "Start Animation"
JButton, but loaded Graph is a private reference

• One solution: adding accessor for Graph in
GraphFrame, and having the Timer call
frame.getGraph().animate()

GraphFrame Graph

TimerJButton

loaded
Graph

Abstract Data Types
• Data structures implement abstract data types

(ADT), analogous to interfaces

• Algorithms for efficient data manipulation can
be complicated; encapsulate them!

• Vast library of well-studied ADTs. Don't reinvent
the wheel, don't reinvent the hash table

• ADTs include: Lists, Sets, Maps

ADTs and Interfaces

• Itʼs good practice to treat all your data
structures through their interfaces

• Only the constructor knows the actual
type; changing implementation is easy

• Makes your code more reusable

• (but be careful about being too general)

Efficiency
• Abstract Data Types usually have limited

functionality

• ideally optimized for the limited
functionality

• The more limited the functionality, the faster
the operations should be

• Design efficient programs by using the most
limited ADT that will do the job

Lists
• An ordered series of objects

• Each object has a previous and next

• Except first has no prev.,
last has no next

• We can insert an object (at location k)

• We can remove an object (at location k)

• We can read an object (from location k)

ArrayList
• Essentially a wrapper for an array

• Store elements in array, but handles list
operations by shifting elements

• If array is full, copies into a new larger array

• O(1) get, O(N) insert/remove

• O(1) insert/remove at the end of list

h l l o

h e l l o

LinkedList
• Stores elements in Link objects

• Each link has reference to next (and prev)

• prev links only in doubly-linked list

• Navigate by following next() references

• O(1) insert/remove with reference

• But need O(N) to find (get) reference

0 1 2 3 4

Stacks and Queues
• Stack - Last in first out

• push() - add element to top of stack

• pop() - remove element from top

• Queue - First in first out

• enqueue (offer) - add element at back of line

• dequeue (poll) - remove from front of line

image from
http://bwog.net/2006/05/03/tray-spotting

Stack Implementation
• Must be as fast as possible: O(1)

• Singly Linked List: add to beginning,
remove from beginning

• Array List: add to end, remove from end

d c b a

a b c d

a b c d e

d c b ae

Queue Implementation
• Doubly-linked list: add at beginning, remove from end

• Array: "circular array"

• mark beginning and end, wrap around when either
exceeds array length

• add at end, remove from beginning but don't shift
d e a b c

d e f b c

Hierarchy
• Should Stack or Queue implement the

Collections Interface type?

• Should Stack or Queue implement the List
Interface type?

• java.util.Stack extends Vector, which
implements both

• java.util.Queue is subinterface of Collection,
but not List

Sets

• An unordered collection

• No duplicate entries

• We can insert an object

• We can check for an object – contains()

• We can remove an object

HashSet

• Uses hashCode() to index into an array

• Collisions occur when distinct elements
hash into the same index

• Collisions resolved by trying empty
spots in a systematic way

Maps

• Maps are collections of objects
"indexed" by other objects

• key types map to value types

• No duplicate keys, duplicate values
allowed

• aka "associative array"

HashMap

• Map<String, Double> costs =
 new HashMap<String, Double>();

• myMap.put("Big Mac", 2.99);

• myMap.get("Big Mac");

• index by the key's hashCode()

• but insert value instead of key

Sets, Maps,
Collections

• Recall that Set is a subinterface of
Collections that has no new methods

• HashMap doesn't implement Collection

• Has methods
• Set<K> keyset()

• Collection<V> values()

Reading
• Might be worth reviewing parts of

previous reading:

• Lists: Horstmann 1.11

• Queues: Horstmann p. 42

• Stacks: Horstmann p. 256-257

• More discussion in section on
Collections Framework, Section 8.3

