Object Oriented
Programming and Design
In Java

Session 19
Instructor: Bert Huang

Announcements

e Homework 4 due MONDAY. Apr. 19

¢ No multithreading in programming part

Review

e Deadlocks and the Dining Philosophers
Problem

e More on Threads in Java

e Thread, Runnable, Object javadoc

e Keywords synchronized and volatile
¢ ReentrantLock

e Programming by contract and threads

Today’s Plan

e Homework tips

e Data Structures

o Lists, Stacks, Queues
e Sets, HashSet

e Maps,

HashMap

Homework Tips:
Main Program

Remember that the framework will do a huge portion of the
work; make a non-animating version first

Create the button that toggles the timer on and off. Test the
timer and the toggle button by having actionListener print to
console

Each time Timer ticks, compute the new position and velocity
for each node

Force = k * lengthOfEdge, Accel. = Force / Mass
Velocity = Velocity + Accel., Position = oldPosition + Velocity

After moving nodes, call repaint() on the GraphFrame

Homework Tlps

JButton Taner

loaded !
—— Graph | Graph

GraphFrame

e Serialization will disconnect animation logic (Timer etc)
because framework encapsulates Graph

¢ Main can connect Graph and Timer to "Start Animation"
JButton, but loaded Graph is a private reference

® (One solution: adding accessor for Graph in
GraphFrame, and having the Timer call
frame.getGraph().animate()

Abstract Data Types

e Data structures implement abstract data types
(ADT), analogous to interfaces

e Algorithms for efficient data manipulation can
be complicated; encapsulate them!

e Vast library of well-studied ADTs. Don't reinvent
the wheel, don't reinvent the hash table

e ADTs include: Lists, Sets, Maps

ADTs and Interfaces

e |t’s good practice to treat all your data
structures through their interfaces

e Only the constructor knows the actual
type; changing implementation is easy

e Makes your code more reusable

e (but be careful about being too general)

Efficiency

e Abstract Data Types usually have limited
functionality

¢ ideally optimized for the limited
functionality

e The more limited the functionality, the faster
the operations should be

e Design efficient programs by using the most
limited ADT that will do the job

Lists

An ordered series of objects
Each object has a previous and next

e Except first has no prev.,
last has no next

We can insert an object (at location k)
We can remove an object (at location k)

We can read an object (from location k)

ArrayList

Essentially a wrapper for an array

Store elements in array, but handles list
operations by shifting elements

h | | o
N N N

h e I I o

If array is full, copies into a new larger array
O(1) get, O(N) insert/remove

e O(1) insert/remove at the end of list

Stores elements in Link objects

LinkedList

Each link has reference to next (and prev)

e prev links only in doubly-linked list

Navigate by following next() references

O(1) insert/remove with reference

e But need O(N) to find (get) reference

<4

0

4—
—

1

4—
—

2

4—
—

3

4—
—

4

—

Stacks and Queues

e Stack - Last in first out ‘
e push() - add element to top of stack !

* pop() - remove element from top -

http://bwog.net/2006/05/03/tray-spotting

e Queue - First in first out
e enqueue (offer) - add element at back of line

e dequeue (poll) - remove from front of line

Stack Implementation

e Must be as fast as possible: O(1)

e Singly Linked List: add to beginning,
remove from beginning

d

>

C

)

b

>

a

-

e

>

d

>

C

-

b

>

a

-

e Array List: add to end, remove from end

a

b

C

d

a

b

C

d

Queue Implementation

e Doubly-linked

ist: add at beginning, remove from end

<4

<

—

4—
—

<

—

<

—

—

e Array: "circular array"”

e mark beginning and end, wrap around when either
exceeds array length

e add at end, remove from beginning but don't shift

d

e

a

b

C

d

e

b

C

Hierarchy

Should Stack or Queue implement the

Collections

Interface type?

Should Stack or Queue implement the List
Interface type?

java.util.Stack extends Vector, which
iImplements both

java.util.Queue is subinterface of Collection,

but not List

Sets

An unordered collection

No duplicate entries

We can insert an object

We can check for an object — contains()

We can remove an object

HashSet

e Uses hashCode() to index into an array

e (Collisions occur when distinct elements
hash into the same index

e (Collisions resolved by trying empty
spots in a systematic way

Maps

Maps are collections of objects
"Indexed" by other objects

key types map to value types

No duplicate keys, duplicate values

d

d

lowed

Ka "associative array"

HashMap

@® Map<String, Double> costs =
new HashMap<String, Double>();

@® myMap.put("Big Mac", 2.99);

@® myMap.get("Big Mac");
¢ index by the key's hashCode()

e but insert value instead of key

Sets, Maps,
Collections

e Recall that Set is a subinterface of
Collections that has no new methods

e HashMap doesn't implement Collection

e Has methods
o Set<K> keyset()

e (Collection<V> values()

Reading

e Might be worth reviewing parts of
previous reading:

e Lists: Horstmann 1.11
¢ Queues: Horstmann p. 42
e Stacks: Horstmann p. 256-257

e More discussion in section on
Collections Framework, Section 8.3

