
Object Oriented
Programming and Design

in Java

Session 18
Instructor: Bert Huang

Announcements

• Homework 4 due Mon. Apr. 19

• No multithreading in programming part

• Final Exam
Monday May 10, 9 AM - noon,
173 MACY (this room)

Review

• Multithreading

• Thread, Runnable

• Handling Race conditions

• Lock, Condition, synchronized

• Producer Consumer

Today's Plan
• Deadlocks and the Dining Philosophers

Problem

• More on Threads in Java

• Thread, Runnable, Object javadoc

• Keywords synchronized and volatile

• ReentrantLock

• Programming by contract and threads

Dining Philosophers

Dining Philosophers
• Example of deadlock when threads need two

or more locks (e.g., moving objects from list
to list)

• Each diner locks chopsticks then eats

• leftChopstick.lock()
rightChopstick.lock()
eat()
rightChopstick.unlock()
leftChopstick.unlock()

Dining Philosophers

Dining Philosophers

First Problem:
Starvation

• Since we donʼt know how OS will
schedule threads, two diners may never
get to eat

• ReentrantLock has a fairness flag that
makes sure locks are granted first-
come-first-served

• new ReentrantLock(true);

Second Problem:
Deadlock

• If all diner threads start simultaneously, we
can get stuck in a deadlock

• Each philosopher locks his left chopstick,
waits for right chopstick

• Even if we use conditions and release the
chopsticks, we could have livelock

• Infinite loop of simultaneously locking and
releasing the left chopsticks

Dining Philosophers

Two Deadlock
Solutions

• Order the chopsticks; locks must be acquired in the
same order

• No circular deadlock, but now some threads have
higher priority

• Require master lock to lock any chopsticks

• master.lock()
leftChopstick.lock(); rightChopstick.lock();
master.unlock();
eat()
leftChopstick.unlock(); rightChopstick.unlock()

Thread States

Reasons for block:
Sleep
Waiting for I/O
Waiting to acquire lock
Waiting for condition

Thread (abridged)
• void join() - Waits for this thread to die

• static void sleep(long millis) - Causes the currently
executing thread to sleep (temporarily cease execution)
for the specified number of milliseconds, subject to the
precision and accuracy of system timers and schedulers.

• void start() - Causes this thread to begin execution; the
Java Virtual Machine calls the run method of this thread.

• static void yield() - Causes the currently executing
thread object to temporarily pause and allow other
threads to execute.

Runnable

Object

synchronized
• Methods with keyword synchronized

automatically lock the containing object
when called

• We can explicitly acquire the object lock
synchronized(objectToLock) { ... }

• This allows us to use unsafe objects safely
synchronized(myArrayList) {
 myArrayList.add(i);
}

Volatile Fields
• A misunderstood method to make synchronize

threads is to declare fields with keyword
volatile

• volatile guarantees that the field is never
cached by a thread

• whereas nonvolatile fields may be copied in
other threads by compiler optimizations

• volatile will not help synchronization when the
problems come from multiple operations

ReentrantLock
• Allows multiple lock acquisitions by a single thread

• Thread that owns it may call lock() again many
times
myLock.lock(); // acquires ownership of myLock
myLock.lock(); // acquires a 2nd lock on myLock

• ReentrantLock will not unlock until unlock() is
called the same number of times
myLock.unlock(); // releases the 2nd lock
myLock.unlock(); // releases the original lock

Recursive Locks
• Recursive locks are controversial

• They encourage code that allows threads to
hold onto locks longer

• Locks stop concurrency

• But they help preserve encapsulation and
abstraction:

• you can make recursive calls without having
each call know about the state of the lock

Threads and
Invariants

• We prove class invariants by showing that
the invariant is true when all methods finish

• Multithreading allows interaction before
methods finish

• Preserve invariants by locking around blocks
of code where the invariant may not be true

• e.g., A[size] is the next empty slot of the array

Threads and
Preconditions

• A precondition that is true when a
method is called may not be true when
the relevant logic is executed

• Preserve the precondition by locking
the objects involved at method call

• maybe too restrictive

Multithreading
• Multithreading is small-scale parallel computing,

i.e., a practice ground for the future of computing

• Relatively new challenge in software design;
multicore only popularized recently in consumer
machines

• Encapsulation, good OOP are still major
challenges,

• e.g., a synchronized, threadsafe ArrayList may
lock too much for some applications

Reading

• Horstmann Ch. 9

