Object Oriented
Programming and Design
In Java

Session 18
Instructor: Bert Huang

Announcements

e Homework 4 due Mon. Apr. 19

¢ No multithreading in programming part

e Final Exam
Monday May 10, 9 AM - noon,
173 MACY (this room)

Review

e Multithreading

e Thread, Runnable
¢ Handling Race conditions
e | ock, Condition, synchronized

e Producer Consumer

Today's Plan

e Deadlocks and the Dining Philosophers
Problem

e More on Threads in Java
e Thread, Runnable, Object javadoc
e Keywords synchronized and volatile
e ReentrantLock

e Programming by contract and threads

Dining Philosophers
O 720
ORIEG

Dining Philosophers

e Example of deadlock when threads need two
or more locks (e.g., moving objects from list

to list)
e Each diner locks chopsticks then eats

o |eftChopstick.lock()
rightChopstick.lock()
eat()
rightChopstick.unlock()
leftChopstick.unlock()

Dining Philosophers

Dining Philosophers

%@@
@

O @

First Problem:
Starvation

e Since we don’t know how OS will
schedule threads, two diners may never
get to eat

e ReentrantLock has a fairness flag that
makes sure locks are granted first-
come-first-served

e new ReentrantLock(true);

Second Problem:
Deadlock

e |f all diner threads start simultaneously, we
can get stuck in a deadlock

e Each philosopher locks his left chopstick,
waits for right chopstick

e Even if we use conditions and release the
chopsticks, we could have livelock

¢ [nfinite loop of simultaneously locking and
releasing the left chopsticks

Dining Philosophers

Two Deadlock
Solutions

e (QOrder the chopsticks; locks must be acquired in the
same order

e No circular deadlock, but now some threads have
higher priority

¢ Require master lock to lock any chopsticks

e master.lock()
leftChopstick.lock(); rightChopstick.lock();
master.unlock();
eat()
leftChopstick.unlock(); rightChopstick.unlock()

Thread States

blocked J

[new

unblock

l runnable

run exits

'Reasons for block:
Sleep ,
Waiting for I/O o }
Waiting to acquire Iock

‘Waltlng for condltlon

=== === = = ___

Thread (abridged)

void join() - Waits for this thread to die

static void sleep(long millis) - Causes the currently
executing thread to sleep (temporarily cease execution)
for the specified number of milliseconds, subject to the
precision and accuracy of system timers and schedulers.

void start() - Causes this thread to begin execution; the
Java Virtual Machine calls the run method of this thread.

static void yield() - Causes the currently executing
thread object to temporarily pause and allow other
threads to execute.

Runnable

Method Summary

void run()

When an object implementing interface Runnable is used to create a thread,

starting the thread causes the object's run method to be called in that separately
executing thread.

Method Detail

run

void run()

When an object implementing interface Runnable is used to create a thread, starting

the thread causes the object's run method to be called in that separately executing
thread.

The general contract of the method run is that it may take any action whatsoever.

Object

void

notify()
Wakes up a single thread that is waiting on this object's monitor.

void

notifyAll()
Wakes up all threads that are waiting on this object's monitor.

String

toString()
Returns a string representation of the object.

void

wait()
Causes the current thread to wait until another thread invokes the notify () method or the
notifyAll () method for this object.

void

wait(long timeout)
Causes the current thread to wait until either another thread invokes the notify() method or the
notifyall () method for this object, or a specified amount of time has elapsed.

void

wait(long timeout, int nanos)

Causes the current thread to wait until another thread invokes the notify() method or the
notifyall () method for this object, or some other thread interrupts the current thread, or a certain amount
of real time has elapsed.

synchronized

® Methods with keyword synchronized

automatically lock the containing object
when called

e \We can explicitly acquire the object lock
synchronized(objectTolLock) { ... }

® This allows us to use unsafe objects safely
synchronized(myArraylList) {
myArraylList.add(1i);
¥

Volatile Fields

A misunderstood method to make synchronize
threads is to declare fields with keyword
volatile

volatile guarantees that the field is never
cached by a thread

whereas nonvolatile fields may be copied in
other threads by compiler optimizations

volatile will not help synchronization when the
problems come from multiple operations

o A
o T

ReentrantLock

lows multiple lock acquisitions by a single thread

nread that owns it may call lock() again many

times
myLock.lock(); // acquires ownership of mylLock
myLock.lock(); // acquires a 2nd lock on mylLock

e ReentrantLock will not unlock until unlock() is

called the same number of times
myLock.unlock(); // releases the 2nd lock
myLock.unlock(); // releases the original lock

Recursive Locks

e Recursive locks are controversial

e They encourage code that allows threads to
hold onto locks longer

e | ocks stop concurrency

e But they help preserve encapsulation and
abstraction:

e you can make recursive calls without having
each call know about the state of the lock

Threads and
Invariants

We prove class invariants by showing that
the invariant is true when all methods finish

Multithreading allows interaction before
methods finish

Preserve invariants by locking around blocks
of code where the invariant may not be true

e.g., A[size] IS the next empty slot of the array

Threads and
Preconditions

e A precondition that is true when a
method is called may not be true when
the relevant logic is executed

e Preserve the precondition by locking
the objects involved at method call

¢ maybe too restrictive

Multithreading

e Multithreading is small-scale parallel computing,
I.e., a practice ground for the future of computing

e Relatively new challenge in software design;
multicore only popularized recently in consumer
machines

e Encapsulation, good OOP are still major
challenges,

® e.g., a synchronized, threadsafe ArrayList may
lock too much for some applications

Reading

e Horstmann Ch. 9

