
Object Oriented
Programming and Design

in Java

Session 17
Instructor: Bert Huang

Announcements

• Homework 3 due now.

• Homework 4 released today.
Due Mon. Apr. 19

• Final Exam Monday May 10 at 9 AM

Review

• Horstmannʼs graph editor framework

• Prototype pattern

• Simple Graph Editor:

• extended Graph, AbstractEdge

• implemented Node

Todayʼs Plan

• Multithreading and Concurrency

• Multithreading in Java

• Handling race conditions

• Handling race conditions in Java

Multithreading
• Modern computer programs perform various

calculations simultaneously

• Each parallel program unit is called a thread

• In most cases, threads are not actually run
in parallel, but by taking turns

• But the OS is responsible for the turn-taking;
we donʼt know its policy

Processes vs. Threads

• Modern OS
distinguish processes
from threads

• Threads share
memory

• Processes donʼt
share memory

Firefox Eclipse IDE

Window 1

Window 2

Downloads

text editor

javadoc
viewer

Threads in Java

• java.lang.Thread

• Construct with Thread(Runnable target)

• interface Runnable has a single method:
void run()

• Thread: start(), sleep(long millis),
 interrupt(), yield(), join()

GreetingProducer
public class GreetingProducer implements Runnable
{
 public GreetingProducer(String aGreeting) {
 greeting = aGreeting;
 }

 public void run() {
 try {
 for (int i = 1; i <= REPETITIONS; i++) {
 System.out.println(i + ": " + greeting);
 Thread.sleep(DELAY);
 }
 } catch (InterruptedException exception) { }
 }

 private String greeting;
 private static final int REPETITIONS = 10;
 private static final int DELAY = 100;
}

ThreadTester
/**
 This program runs two threads in parallel.
*/
public class ThreadTester {
 public static void main(String[] args) {
 Runnable r1 = new
 GreetingProducer("Hello, World!");
 Runnable r2 = new
 GreetingProducer("Goodbye, World!");

 Thread t1 = new Thread(r1);
 Thread t2 = new Thread(r2);

 t1.start();
 t2.start();
 }
}

1: Hello, World!
1: Goodbye, World!
2: Hello, World!
2: Goodbye, World!
3: Hello, World!
3: Goodbye, World!
4: Hello, World!
4: Goodbye, World!
5: Hello, World!
5: Goodbye, World!
6: Hello, World!
6: Goodbye, World!
7: Hello, World!
7: Goodbye, World!
8: Hello, World!
8: Goodbye, World!
9: Hello, World!
9: Goodbye, World!
10: Hello, World!
10: Goodbye, World!

Interrupting Threads
 public void run() {
	 try {
	 	 while(more_work_to_do) {
	 	 	 // do work
	 	 	 Thread.sleep(DELAY);
	 	 }
	 }
 catch(InterruptedException e)
 {
 }
	 // clean up
 }

• If you need to terminate a
thread, call
Thread.interrupt()

• Causes Thread.sleep() to
throw InterruptedException

• Your run method should
be structured to handle
interrupts cleanly

Joining Threads

• myThread.join() joins Thread myThread
with the current thread

• i.e., waits for myThread to finish its
run() method

Current thread

myThread

Race Conditions
• Multiple threads can modify the same

memory

• Race condition: when poor timing
causes threads to modify memory with
unexpected results

• Usually involving multiple threads
“racing” to modify the memory first

Incrementing a
Counter

• Thread 0: c = c + 1;

• Thread 1: c = c + 1;

• The operation reads
current value of c

• Sets c to that value + 1

c: 0
T0: c is 0
set c to 1 c: 1

T1: c is 1
set c to 2

c: 2

T1: c is 2
set c to 3

c: 3

T1: c is 0
set c to 1

Incrementing a
Counter

• Both threads can read
at the same time, and
set c to c + 1

• Result should be c + 2,
but instead is c + 1

c: 0
T0: c is 0

c: 1

c: 1T0: set c to 1

Locks
• We can use locks to fix race conditions

• Threads temporarily acquire ownership of locks

• Only one thread can own a lock at a time

• If a thread tries to acquire a lock but it is owned
by another, it waits

• When a lock owner releases the lock, all
waiting threads are notified

Lock Interface

• java.util.concurrent.locks package includes
the Lock interface

• Objects that implement Lock have
• lock() // prevent other threads from

 // locking this object

• unlock() // allow other threads to lock this

import java.util.ArrayList;

/**
 * Running multiple threads of this on the same list will cause
 * race conditions
 */
public class UnsafeAdder implements Runnable {
	 public UnsafeAdder(ArrayList<Integer> a) {
	 	 list = a;
	 }

	 public void run() {
	 	 try {
	 	 	 for (int i = 0; i < 10; i++) {
	 	 	 	 list.add(i);
	 	 	 	 Thread.sleep(10);
	 	 	 }
	 	 } catch (InterruptedException e) {}
	 }

	 private ArrayList<Integer> list;
}

import java.util.ArrayList;
import java.util.concurrent.locks.Lock;

/**
 * Running multiple threads of this on the same list shouldn't
cause race conditions
 * @author 1007
 */
public class SafeAdder implements Runnable {
	 public SafeAdder(ArrayList<Integer> a, Lock myLock) {
	 	 list = a;
	 	 lock = myLock;
	 }

	 public void run() {
	 	 try {
	 	 	 for (int i = 0; i < 10; i++) {
	 	 	 	 lock.lock();
	 	 	 	 try {
	 	 	 	 	 list.add(i);
	 	 	 	 } finally {
	 	 	 	 	 lock.unlock(); // Guaranteed to unlock even if
	 	 	 	 } // list.add(i) throws an exception
	 	 	 	 Thread.sleep(10);
	 	 	 }
	 	 } catch (InterruptedException e) {}
	 }

	 private Lock lock;
	 private ArrayList<Integer> list;
}

import java.util.ArrayList;
import java.util.concurrent.locks.*;

/**
 * Simple test of Java Locks
 * @author 1007
 *
 */
public class LockTest {
	 public static void main(String [] args) {
	 	 ArrayList<Integer> a = new ArrayList<Integer>();
	 	 Thread t1 = new Thread(new UnsafeAdder(a));
	 	 Thread t2 = new Thread(new UnsafeAdder(a));
	 	 t1.start(); t2.start();
	 	 try {
	 	 	 t1.join(); t2.join();
	 	 } catch (InterruptedException e) {}
	 	 System.out.println("No lock: " + a);
	 	
	 	 Lock lock = new ReentrantLock();
	 	 ArrayList<Integer> b = new ArrayList<Integer>();
	 	 Thread t3 = new Thread(new SafeAdder(b, lock));
	 	 Thread t4 = new Thread(new SafeAdder(b, lock));
	 	 t3.start(); t4.start();
	 	 try {
	 	 	 t3.join(); t4.join();
	 	 } catch (InterruptedException e) {}
	 	 System.out.println("With lock: " + b);
	 }
}No lock: [0, 0, 1, 2, 3, 4, 5, 6, 7, 8, null, 9]
With lock: [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9]

Producer/Consumer
• Common pattern in threaded programs

• Some threads produce resources, other
consume resources

• e.g., producers add elements to a set
while consumers remove elements

• Consumers must wait until set is nonempty

• Locks are not enough to make this work

Consumer Attempt 1
• while set is empty

 Thread.sleep(DELAY)
setLock.lock()
consume(set.remove())
setLock.unlock()

• JVM could switch to another thread after
passing through while check

• Then when this thread resumes, set could be
empty

Switch to another
thread

Consumer Attempt 2

• setLock.lock()
while (set is empty)
 Thread.sleep(DELAY)
consume(set.remove())
setLock.unlock()

• While this thread is waiting for the set to
be non-empty, no one else can lock()

Condition Objects
• Each Lock can have any number of Condition objects
• Condition setNonEmpty = setLock.newCondition()

• setLock.lock()
while(set.isEmpty())
 setNonEmpty.await() // releases the lock

• Whenever the condition could have changed, call
setNonEmpty.signalAll()

• Unblock all waiting threads, but a thread must
reacquire the lock before returning from await

Object Locks
• Java Objects have built-in locks

• Any method tagged with keyword
synchronized requires a lock

• When the method finishes, the lock is
automatically released

• Object locks also allow the command wait(),
used to wait for a condition

• After a condition changes, call notifyAll()

Object Locked
ArrayList<E>

• public synchronized E remove()
{
 while (size == 0) wait();
 ...
}

• public synchronized void add(E obj)
{
 ...
 notifyAll();
}

Dining Philosophers

Threads
• Multithreading allows our programs to

perform tasks in parallel

• But requires coordination of the threads'
memory operations

• Coordinate threads using locks and
conditions

• Lock interface

• Object locks (synchronized methods)

Reading

• Horstmann 9.1-9.2

