
Object Oriented
Programming and Design

in Java

Session 12
Instructor: Bert Huang

Announcements

• Midterm exam Wednesday, Mar. 10th

• Midterm sample problems and solutions
posted on courseworks

Review
• Java Types

• Arrays, enums

• The Object Class

• toString(), equals(), clone(),
hashCode()

• Hash tables

Today's Plan
• Design tools (UML, CRC cards, etc)

• Designing classes, programming by
contract

• Interfaces and polymorphism

• Programming patterns

• Inheritance and hierarchy

• Types in Java

Ideas to Programs
Analysis

Design

Implementation

(common sense)

(object-oriented)

(actual programming)

Use Cases

• Use cases specifically describe the
operation of the program

• Narrows down exactly what you want
your program to do

• Useful as test cases

• Implementation and design donʼt matter

Identifying Classes
• Good first step: look for tangible nouns

in use cases. Then...

• Agents - objects that perform tasks

• Events - store information about events

• Systems, interfaces - run the program,
talk to user or other programs

• Foundational classes - String, Date, etc.

Identifying
Responsibilities

• Good first step: look for verbs, actions
in use cases

• These actions may directly describe
responsibilities, or

• may depend on other responsibilities

CRC “Cards”
• Class - Responsibility - Collaborators

• Brainstorming tool for setting up classes
and responsibilities

• Collaborators loosely define class
relationships; we get more precise later

ClassName
responsibility 1
responsibility 2
...

Collaborator 1
Collaborator 2

...

Walkthroughs with
CRC

• Play out (partial) use cases using CRC

• Who does what during the use case?

• Do some objects have too much
responsibility?

• Create helper objects or agents

• Are some classes never used?

UML Class Diagrams

• Each class is a rectangle

• Connect classes by their relationship

Class Name

Attributes : Type

Methods

Class Relationships
• Dependency - any time one class

needs the other

• Aggregation - one class contains
elements of the other class

• Association - other relationship

• Inheritance

• Interface Implementation

Sequence Diagrams
• Draw objects as they interact

over time

• UML: underline to indicate
instances

• Each object has dotted life-line

• Activation bars indicate
object running

• Arrows indicate method calls

objectName :
Class

other :
Class

doSomething()

State Diagrams

• Useful for visualizing how an object
changes over time

• Rounded rectangles represent states

• Arrows and text describe triggers for
state changes

Type in
all caps

Type in
lowercasehit caps lock

hit caps lock

Why Encapsulation?

Encapsulation

MyClass
int data
String name

OtherClass thing

void doSomething()
int getSomething()

The rest of your program...

/* interface methods */

Why Encapsulation?

• Easier changes to implementation

• Control of inputs and outputs

• Less old code to have to maintain when
updating

• When changes are made, easier to find
what code is affected

• Cohesion

• Completeness

• Convenience

• Clarity

• Consistency

• Cohesion - represent only one concept

• Completeness - does everything youʼd expect

• Convenience - some syntactic sugar,
BufferedReader(new InputStreamReader(System.in))

• Clarity - behavior of class should be easy to explain
accurately

• Consistency - naming conventions, etc

Good Interfaces

Accessors vs.
Mutators

• Methods to handle data members

• Accessors for reading

• Mutators for writing/modifying

• Keep them separate

Side Effects

• Avoid methods with side effects

• Calling accessors repeatedly should
yield same result

• counterexample: Scanner.nextLine()

• Mutators should change things in an
obvious way

Programming by
Contract

• Another formalism to help organization

• All methods and classes have
“contracts” detailing responsibilities

• Contracts expressed as preconditions,
postconditions, and invariants

Preconditions

• Condition that must be true before
method is called

• e.g., indices must be in range, objects
must not be null

• Limits responsibilities of your method

Postconditions
• Conditions guaranteed to be true after

method runs

• e.g., after calling sort(), ToDoList
elements are sorted by due date

• Useful when in addition to @return tags

• I.e., usually involves mutators or side
effects

Invariants
• General properties of any member of a

class that are always true

• e.g., ToDoList is always sorted

• Implementation invariants are useful
when building the class

• Interface invariants are useful when
using the class

Why Interfaces?
• Interchangeable parts are essential in

modern engineering

• Allows tools and parts to be used for
various applications

• Without establishing standard
interfaces, every part must be custom-
built for each application

Interfaces of Screws
Flat Philips

Iterator Interface

• An Iterator<T> lets you look at one
element at a time from a Collection<T>

• boolean hasNext(), T next()

• Using Iterators, you can write code that
doesn't know what kind of Collection
you have

Iterators Preserve
Encapsulation

• Iterator user doesn't know how the
items are stored

• Iterating through linked list:

• Do work on current node

• Go to current.next()

• Need to know linked list structure, and
private next() links

Programming
Patterns

• Patterns are defined by a general
context, the design challenge

• And a solution, which prescribes how
to design your program in the context

• Since patterns are general, they will
feature many interfaces

Iterator: Context

• An aggregate object contains element objects

• Clients need access to the elements

• The aggregate should not expose its internal
structure

• There may be multiple clients that need
simultaneous access

Iterator: Solution
• Define an iterator class that fetches on

element at a time

• Each iterator object keeps track of the
position of the next element to fetch

• If there are variations of the aggregate
and iterator class, implement common
interface types.

Patterns in GUI
Programming

• We saw in our example GUI programs
that GUI code can get messy

• Thus, there are many useful patterns
people have established for GUIs

Model-View-
Controller

• Context: GUI displays some data that the
user can affect via GUI

• Solution: separate objects into a model, a
view and a controller

• Model - stores the data

• View - displays the data from Model

• Controller - maps user actions to model
updates

MVC Responsibilities
Model
Stores text and formatting markup (fonts, sizes, colors)
Notifies View to update when Model changes

View
Displays text with proper fonts and sizes
Displays toolbar
Notifies Controller when user edits text or clicks toolbar commands

Controller
Notifies model to change text when user inputs
Notifies model to perform special commands when toolbar
 buttons are clicked

Pattern: Observer
• A subject object is the source of events

• One or more observer objects want to know when an
event occurs

• Define an observer interface type

• The subject maintains collection of observer objects

• The subject provides methods for attaching observers

• Whenever an event occurs, the subject notifies all
observers

C
on

te
xt

So
lu

tio
n

Observers in MVC
• View observes Model; when Model

changes, it notifies View

• Controller observes View; when user
manipulates View, it notifies Controller

View Controller

Model

Pattern: Composite
• Primitive objects can be combined into composite objects

• Clients treat a composite object as a primitive object

• Define an interface type that abstracts primitive objects

• Composite object contains a collection of primitive objects

• Both primitive and composite classes implement interface

• When implementing methods from the interface,
composite class applies method to its primitive objects
and combines the results

Pattern: Decorator
• You want to enhance the behavior of a component class

• A decorated component can be used in the same way as a
plain component

• The component class shouldnʼt be responsible for the
decoration

• There may be an open-ended set of possible decorations

• Define an interface type that abstracts the component

• Concrete component classes implement this interface

• Decorator classes also implement this interface

• Decorator objects manage the component that it decorates

Pattern: Strategy
• A context class benefits from different variants of an

algorithm

• Clients of the context class sometimes want to supply
custom versions of the algorithm

• Define an interface type, called a strategy, that abstracts
the algorithm

• Each concrete strategy class implements a version of the
algorithm

• The client supplies a concrete strategy object to the
context class

• Whenever the algorithm needs to be executed, the context
class calls the appropriate methods of the strategy object

Inheritance

• Describes a relationship between
classes in which a subclass is a more
specific form of a superclass

• Declared in Java with the keyword extends

Subclasses
• Subclasses often provide additional

methods and fields

• or they may override the superclass's
methods

• Java allows special keyword super to refer
to superclass

• used to invoke superclass's methods,
including constructor

Liskov's Substitution
Principle

• Let q(x) be a property provable about
objects x of type T. Then q(y) should be
true for objects y of type S where S is a
subtype of T. (Liskov)

• You can substitute subclass objects
whenever a superclass object is
expected

• but not always vice versa (never)

Polymorphism and
Inheritance

• Overriding methods can cause some
confusion if we're unclear on how inheritance
works

• We extended MouseAdapter to make
MyMouseListener

• MouseAdapter ma = new MyMouseListener();
ma.mouseClicked(); // what happens?

• Actual types of objects, not declared types,
determine which methods are called

Encapsulation and
Inheritance

• Public and private modifiers apply even to
subclasses

• Extending a class doesn't grant you access to its
private methods

• Otherwise, implementations would not be
interchangeable, since subclasses would depend
on private class code

• Subclasses must implement their added
functionality using only public interface of
superclass

Preconditions and
Postconditions

• Subclass methods cannot have stricter
preconditions than superclass methods

• Subclass methods cannot have looser
postconditions than superclass methods

• Because all subclass objects must fit
Liskov substitution; they must be
viewable as superclass objects

Inheritance

• Subclasses inherit methods and fields
from superclasses

• Analogous to taxonomies

• In Java and most languages,
subclasses can only inherit from one
superclass

Abstract Classes

• Abstract classes are meant to be extended by
various subclasses

• The abstract class can never be instantiated

• but methods and fields can be defined and
implemented

• A subclass can only extend one abstract class

Pattern: Template Method
• An algorithm is applicable for multiple types

• The algorithm can be broken down into primitive operations.
The primitive operations can be different for each type

• The order of the primitive operations in the algorithm doesn't
depend on the type

• Define an abstract superclass that has a method for the
algorithm and abstract methods for the primitive algorithms

• Implement algorithm to call primitive operations in order

• Leave primitive operations abstract or have basic default

• Each subclass defines primitive operations but not the
algorithm

Types
• Programming languages organize

variables into types

• Classes are related, but donʼt tell the
whole story

• Types include primitives and classes

• Java is a strongly typed language: many
compiler checks to validate type usage

Types in Java
• Types in Java are either

• A primitive type

• A class type

• An interface type

• An array type

• The null type

Values in Java
• Values in Java are either

• A primitive value (int, double, etc.)

• A reference to an object of a class

• ʼʼ ʼʼ

• A reference to an array

• null

Reading

• Horstmann Ch. 2.1 - 7.4

• Skim code, focus on concepts

