Object Oriented
Programming and Design
In Java

Session 11
Instructor: Bert Huang

Announcements

e Midterm review Monday, Mar. 8th
e Midterm exam Wednesday, Mar. 10t

e Midterm sample problems posted on
courseworks

Review

e |nheritance and hierarchy

e Abstract classes

e Example hierarchies

e Swing class hierarchy

e awt.geom

e Exception

nierarc

nierarc

Yy

Yy

Today’s Plan

e Java Types
e Arrays, enums

e The Object Class

e toString(), equals(), clone(),
hashCode()

e Hash tables

Types

Programming languages organize
variables into types

Classes are related, but don’t tell the
whole story

Types include primitives and classes

Java is a strongly typed language: many
compiler checks to validate type usage

Types in Java

e Types in Java are either
e A primitive type
e A class type
e An interface type
e An array type
e The null type

Values In Java

e Values in Java are either
e A primitive value (int, double, etc.)

e A reference to an object of a class

e Areference to an array

e null

Inheritance and Types

e The ideas of inheritance and hierarchy
we’ve discussed recently apply to types

e Types can be subtypes of supertypes

e \ariables of subtypes can be substituted
for when a supertype variable is expected

e Liskov’s substitution principle is about
types

Rules for Java
Subtypes

e Sisasubtype of T if

e S and T are the same type

e Sand T are both class typesand Sis a
subclass of T

e Sis aclasstype, T is an interface type, and S
or one of its superclasses implements interface
T or one of its interfaces

e S and T are both array types and the
component type of S is a subtype of the

~rnnmnnnant hnina nf T

e S and T are the same type

e Sand T are both class types and S is a
subclass of T

e Sis aclasstype, Tis an interface type, and S
or one of its superclasses implements interface
T or one of its interfaces

e S and T are both array types and the
component type of S is a subtype of the
component type of T

e Sis not a primitive and T is the type Object

e Sis an array type and T is the type Cloneable
or Serializable

e Sisthe null type and T is not a primitive Type

Primitive Types

e int, long, byte, char, float, double,
boolean

e Values are stored directly in memory

e No real hierarchy; byte is not a subtype
of int

The null Type

e Subtype of all non-primitive types
e Usually used as a placeholder before
initialization

e \We can check if object’s value == null

Objects

Values are references: memory
locations

== will compare references, not values

Data is stored as primitives or in the
structure of references

Obijects’ types are defined by classes

Arrays

Arrays in Java are types (String [] args)

“S and T are both array types and the
component type of S is a subtype of the
component type of T”

Is int a subtype of int [|? No

Is MouseAdapter [| a subtype of
MouseL.istener []? Yes

Multidimensional
Arrays

e Since arrays are variables of the array
type, we can have arrays of arrays

e |nteger [][] grid;

e This is a subtype of Number [][], but
not hierarchically connected to Integer]

enum

e Java provides a way to create special class
types called enumerated types

e These are types that have a few possible
values, but there is no order or numerical
meaning to the values

e e.g., BorderLayout. NORTH, SOUTH, EAST,
WEST

e |nstead of constants that a client can then read
as meaningless int values, use enum type

enum Usage

e public enum Location { NORTH,
SOUTH, EAST, WEST };

e Clients can instantiate Location objects,
or use constants Location.NORTH, etc.

e The special syntax is sugar for
“extends Enum”

java.lang.Object

e All class variables extend the base Java
class, java.lang.Object

e (Object contains a few implemented methods:
e String toString()
e boolean equals(Object other)
e (Object clonel()
¢ int hashCode()

toString()

Returns String representation of the Object

mportant in Java because it is used
automatically with the + operator on Strings

The default returns the name of the class
and the hash code in hexadecimal

Usually, you should override with
something more useful

equals()

e Returns whether parameter is “equal” to this

e Should override with useful definition of
equality. Must be

e Reflexive (x.equals(x) always true)
e Symmetric (x.equals(y) == y.equals(x))

e Transitive (x.equals(y) & y.equals(z) means
X.equals(z))

e Default is the actual == operation

clone()

Clone is meant to be used when you want
an actual copy of an Object instead of
another reference

(x.clone() '= x) && (x.clone().equals(x))
Default clone() copies all fields

clone() is a protected method by default and
can only be used if your subclass
implements the Cloneable interface

The Cloneable
Interface

e Tagging interface; contains no methods

e But Object uses it to check that calls to
clone() are only on Cloneable objects

e otherwise throws CloneNotSupportedException

e Must be careful; copying fields may still
share common aggregated objects

hashCode()

e Returns a int representing the Object
e Must be consistent with equals()

o |f X.equals(y),
then x.hashcode() == y.hashcode()

e pbut hashcodes can be equal for
different objects (this is unavoidable)

e Must be overridden to be useful

Hash Tables

e A hash table fixes a major complaint
about arrays and lists:

e Why do | have to look up elements by
integer indices?

* e.g., “index” values by String, A[*John”]

e Refer to the “index” as the key

Initial Intuition

e |[f we have infinite memory, we can enumerate
all possible keys 1 through K

e Create an array with K entries

e |nsert, delete, search are just array operations

I 2 3 4 5 6 | .. |K3|K2|K-1] K

Hash Functions

e A hash function maps any key to a valid
array position

e Array positions range from 0 to N-1

e Key range possibly unlimited

I 2 3 4 5 6 v | K-3 | K-2 | K-I

HashTable

e HashTable<Key, Valuex()

e Stores values according to the key’s
hashcode()

e Value get(Key k)

e \alue put(Key k, Value v)

¢ boolean contains(Value v)

e boolean containsKey(Key k)

Bonus: More Hashing
Detalls

For integer keys, (key mod N) is the simplest hash function

In general, any function that maps from the space of keys
to the space of array indices is valid

but a good hash function spreads the data out evenly in
the array

Collisions will happen, but hopefully rarely.

e Handle by storing in a list or in a systematic way in other
array locations

Reading

e Horstmann Ch. 7.1-7.4

