
Object Oriented
Programming and Design

in Java

Session 11
Instructor: Bert Huang

Announcements

• Midterm review Monday, Mar. 8th

• Midterm exam Wednesday, Mar. 10th

• Midterm sample problems posted on
courseworks

Review
• Inheritance and hierarchy

• Abstract classes

• Example hierarchies

• Swing class hierarchy

• awt.geom hierarchy

• Exception hierarchy

Todayʼs Plan
• Java Types

• Arrays, enums

• The Object Class

• toString(), equals(), clone(),
hashCode()

• Hash tables

Types
• Programming languages organize

variables into types

• Classes are related, but donʼt tell the
whole story

• Types include primitives and classes

• Java is a strongly typed language: many
compiler checks to validate type usage

Types in Java
• Types in Java are either

• A primitive type

• A class type

• An interface type

• An array type

• The null type

Values in Java
• Values in Java are either

• A primitive value (int, double, etc.)

• A reference to an object of a class

• ʼʼ ʼʼ

• A reference to an array

• null

Inheritance and Types
• The ideas of inheritance and hierarchy

weʼve discussed recently apply to types

• Types can be subtypes of supertypes

• Variables of subtypes can be substituted
for when a supertype variable is expected

• Liskovʼs substitution principle is about
types

Rules for Java
Subtypes

• S is a subtype of T if

• S and T are the same type

• S and T are both class types and S is a
subclass of T

• S is a class type, T is an interface type, and S
or one of its superclasses implements interface
T or one of its interfaces

• S and T are both array types and the
component type of S is a subtype of the
component type of T

• S is not a primitive and T is the type Object

• S is an array type and T is the type Cloneable
or Serializable

• S is the null type and T is not a primitive Type

• S is a subtype of T if

• S and T are the same type

• S and T are both class types and S is a
subclass of T

• S is a class type, T is an interface type, and S
or one of its superclasses implements interface
T or one of its interfaces

• S and T are both array types and the
component type of S is a subtype of the
component type of T

• S is not a primitive and T is the type Object

• S is an array type and T is the type Cloneable
or Serializable

• S is the null type and T is not a primitive Type

Primitive Types

• int, long, byte, char, float, double,
boolean

• Values are stored directly in memory

• No real hierarchy; byte is not a subtype
of int

The null Type

• Subtype of all non-primitive types

• Usually used as a placeholder before
initialization

• We can check if objectʼs value == null

Objects

• Values are references: memory
locations

• == will compare references, not values

• Data is stored as primitives or in the
structure of references

• Objectsʼ types are defined by classes

Arrays
• Arrays in Java are types (String [] args)

• “S and T are both array types and the
component type of S is a subtype of the
component type of T”

• Is int a subtype of int []?

• Is MouseAdapter [] a subtype of
MouseListener []?

No

Yes

Multidimensional
Arrays

• Since arrays are variables of the array
type, we can have arrays of arrays

• Integer [][] grid;

• This is a subtype of Number [][], but
not hierarchically connected to Integer []

enum
• Java provides a way to create special class

types called enumerated types

• These are types that have a few possible
values, but there is no order or numerical
meaning to the values

• e.g., BorderLayout.NORTH, SOUTH, EAST,
WEST

• Instead of constants that a client can then read
as meaningless int values, use enum type

enum Usage

• public enum Location { NORTH,
SOUTH, EAST, WEST };

• Clients can instantiate Location objects,
or use constants Location.NORTH, etc.

• The special syntax is sugar for
“extends Enum”

java.lang.Object
• All class variables extend the base Java

class, java.lang.Object

• Object contains a few implemented methods:

• String toString()

• boolean equals(Object other)

• Object clone()

• int hashCode()

toString()
• Returns String representation of the Object

• mportant in Java because it is used
automatically with the + operator on Strings

• The default returns the name of the class
and the hash code in hexadecimal

• Usually, you should override with
something more useful

equals()
• Returns whether parameter is “equal” to this

• Should override with useful definition of
equality. Must be

• Reflexive (x.equals(x) always true)

• Symmetric (x.equals(y) == y.equals(x))

• Transitive (x.equals(y) & y.equals(z) means
x.equals(z))

• Default is the actual == operation

clone()
• Clone is meant to be used when you want

an actual copy of an Object instead of
another reference

• (x.clone() != x) && (x.clone().equals(x))

• Default clone() copies all fields

• clone() is a protected method by default and
can only be used if your subclass
implements the Cloneable interface

The Cloneable
Interface

• Tagging interface; contains no methods

• But Object uses it to check that calls to
clone() are only on Cloneable objects

• otherwise throws CloneNotSupportedException

• Must be careful; copying fields may still
share common aggregated objects

hashCode()
• Returns a int representing the Object

• Must be consistent with equals()

• if x.equals(y),
then x.hashcode() == y.hashcode()

• but hashcodes can be equal for
different objects (this is unavoidable)

• Must be overridden to be useful

Hash Tables

• A hash table fixes a major complaint
about arrays and lists:

• Why do I have to look up elements by
integer indices?

• e.g., “index” values by String, A[“John”]

• Refer to the “index” as the key

Initial Intuition
• If we have infinite memory, we can enumerate

all possible keys 1 through K

• Create an array with K entries

• Insert, delete, search are just array operations

1 2 3 4 5 6 ... K-3 K-2 K-1 K

Hash Functions
• A hash function maps any key to a valid

array position

• Array positions range from 0 to N-1

• Key range possibly unlimited

1 2 3 4 5 6 ... K-3 K-2 K-1 K

0 1 ... N-2 N-1

HashTable
• HashTable<Key, Value>()

• Stores values according to the keyʼs
hashcode()

• Value get(Key k)

• Value put(Key k, Value v)

• boolean contains(Value v)

• boolean containsKey(Key k)

Bonus: More Hashing
Details

• For integer keys, (key mod N) is the simplest hash function

• In general, any function that maps from the space of keys
to the space of array indices is valid

• but a good hash function spreads the data out evenly in
the array

• Collisions will happen, but hopefully rarely.

• Handle by storing in a list or in a systematic way in other
array locations

Reading

• Horstmann Ch. 7.1-7.4

