Object Oriented
Programming and Design
In Java

Session 10
Instructor: Bert Huang

Announcements

e Homework 2 due Mar. 3rd, 11 AM
e two days
e Midterm review Monday, Mar. 8th

¢ Midterm exam Wednesday, Mar. 10th

Review

e More LayoutManager examples
e BorderLayout, BoxLayout, GridLayout
e Discussion of Inheritance

e | iskov's Substitution Principle

e Polymorphism, encapsulation,
preconditions and postconditions

Today's Plan

¢ |nheritance and hierarchy

e Abstract classes

e Example hierarchies

e Swing class hierarchy

e awt.geom hierarc

e EXxception hierarc

Yy

1y

Inheritance

e Subclasses inherit methods and fields
from superclasses

¢ Analogous to taxonomies

e |n Java and most languages,
subclasses can only inherit from one
superclass

Phylogenetic Trees

Animal Superclass
A
| |
Reptile Mammal
A
| |
Cat Dog

Subclasses

Abstract Classes

Abstract classes are meant to be extended by
various subclasses

The abstract class can never be instantiated

but methods and fields can be defined and
iImplemented

A subclass can only extend one abstract class

Abstract Class
Example

e Suppose you make a HumanPlayer and
ComputerPlayer class for a card game

e CRC cards for both include

® next move given game state

<tore score, ED\

<?emember previous move

|mplementat|on
will be the same

iﬁ

AbstractPlayer

* Example class. Will not compile and features
* a very incomplete design
*/

public abstract class AbstractPlayer {

public AbstractPlayer()

{

myCards =
score = 0;

¥

new ArraylList<Card>(Q);

public abstract Move nextMove(GameState game);

public void addCard(Card c) { myCards.add(c); }
public int getScore() { return score; }

public void setScore(int newScore) { score = newScore; }

*/
public abstract class AbstractPlayer {

public AbstractPlayer()

{

myCards
score

}

new ArraylList<Card>();

0;

public abstract Move nextMove(GameState game);

public void addCard(Card c) { myCards.add(c); }

public int getScore() { return score; }

public void setScore(int newScore) { score = newScore; }
public void addMove(Move newMove) { myMoves.add(newMove); }
private score;

private Arraylist<Card> myCards;
private Arraylist<Move> myMoves;

Template Methods

e Not always obvious how to separate
algorithms and implementations

e Sometimes parts of algorithms are
implementation specific, but the main
flow is the same

e Think of the main flow of the algorithm
as a template

Saving a file

e Format-free template method:
¢ Open a file to be written

e Translate object to be saved to text or
binary format

e Write text or binary to file

e Close file

Pattern: Template Method

An algorithm is applicable for multiple types

The algorithm can be broken down into primitive operations.
The primitive operations can be different for each type

The order of the primitive operations in the algorithm doesn't
depend on the type

Define an abstract superclass that has a method for the
algorithm and abstract methods for the primitive algorithms

Implement algorithm to call primitive operations in order
Leave primitive operations abstract or have basic default

Each subclass defines primitive operations but not the
algorithm

Template vs. Strategy

e Template Method is very similar to
Strategy

e Strategy delegates entire algorithm to
the strategy object

¢ Template method delegates small
pieces: the primitive operations

Swing Components

JComponent

abstract classes

JPanel

JText
Component

T / NG

JLabel

JText JText JBUtt JMenu
Field Area Lkl ltem

JTextComponent

int getSelectionEnd()

int getSelectionStart()
String getText()

void setText()

void paste()

void setEditable(boolean)

boolean isEditable()

Point2D

Point

AWT Shapes

«interface»

Shape
%
: Rectangular |
Line2D Shape GeneralPath Polygon
Round :
Rectangle2D Ellipse2D Arc2D

Rectangle

abstract classes

Rectangle2D

Rectangle2D
{abstract}

¢ Rectangle2D has two T
iInner classes

Rectangle2D Rectangle2D
.Double .Float

e |et's clients choose

tradeoff between precision and memory

e Most work is done inside Rectangle2D
(using double precision!)

public class RectangleZD

{

public static class Float extends RectangleZD

{

public double getX() { return x; }

public double getY() { return y; }

public double getWidth() { return width; }
public double getHeight() { return height;}
/7 ...

public /float: x;

public float'y;

public float width;

public float height;

}

public static class Double extends RectangleZD
{
public double getX() { return x; }
public double getY() { return y; }
public double getWidth() { return width; }
public double getHeight() { return height;}
/] ...
public double x;

public static class Double extends RectangleZ2D

.| primitive
7| operations

public double x,
public double vy;
public double width;
public double height;

}

public boolean contains(double x, double y)

{ ~__

double x@ =CgetX(D;

double yo @) Template
return x >= x0 88 y >= y@ && Method

Exceptions

Throwable

i

Exception Error

|

' Class
Runtime .
Exception IOException NotFoqnd
Exception

T

NullPointer
Exception

IndexOut
OfBounds
Exception

FileNotFound
Exception

Hierarchy

e With some foresight, you can design
inheritance hierarchy for classes

e Otherwise, when you find redundant
functionality, refactor into hierarchy after
or during coding

Reading

e Today:
¢ Horstmann Ch. 6
e \Wednesday:
¢ Horstmann Ch. 7.1-7.6

