Introduction to
Computer
Science and
Progra,néming in

Session 9: September 30, 2008
Columbia University




Announcements

Homework 2 is out. Due 10/14
Midterm Review on 10/16, exam on 10/21
Start the homework!

Submission procedure




Checking your tar file

General Description Reqguirements Readinas Topics Policies Schedule

Introduction to Computer Science and
Programming in C

General Information

Instructor: Bert Huang. Office hours Tuesday 2:30 PM - 4:30 CEPSR 624 (or by appointment)

TA: Deergha Sahni, UNI: ds2664, Office hours Wednesday 3:00 PM - 5:00 PM TA Room http://ta.cs.columbia.edu/tamap.shtml
TA: Peter Lu, UNI: yI2505, Office hours Thursday 4:00 PM - 6:00 PM TA Room

TA: Sharath Avadoot Gururaj, UNI: sa2617, Office hours Monday 1:30 PM - 3:30 PM TA Room

Time: Tuesday and Thursday 1:10 PM - 2:25 PM

Location: Mudd-834 Changed to Mudd 233

Courseworks site (message board etc.): http://courseworks.columbia.edu/

Description




Review

» Finished talking about recursion

o Hanoi solution: Move N discs
» Move (N-1) discs out of the way
o Move bottom disc to destination

o Move (N-1) discs to destination




Today

o Quick useful recursion example
o Advanced types: structs, unions, typedef

o Programming tips




File Systems

~/ (home)

1003

old_stuff

—

homework1l

/

homework?2

/ \




Searching

o search for file(current dir, file)
o if file is in current dir, done!
o else

o for each directory sub_dir in current_dir
search_for file(sub_dir, file)




Searching

~/ (home)

1003

old_stuff

—

homework1l

/

homework?2

/ \




Searching

» Recursive search algorithm defines a
deterministic order to search.

o (This method is called Depth First Search)




struct

» Often we want to use sets of variables together.

o Example: contact info of a business

o float longitude, latitude;
char address[256], name[128];
int phone;

» Storing like this become cumbersome when we
have more than one business.

10




struct

» C comes with a special type, called a struct

o struct business {
float longitude, latitude;
char address[256], name[128];
int phone;

}i

» Access these values using . (period)

struct business wachovia;
wachovia.phone = 8005551234;
strcpy(wachovia.name, “Citigroup”);

11




struct

struct is short for data structure.

Each value inside a struct is called a field

We can treat structs as any variable

o functions return structs or take as arguments

o Arrays of structs (simple databases)
struct business fortune[500];

12




union

o In rare cases, we need to have a data structure
that can have multiple types.

o In a sense, we want to override C’s feature of
having types.
» union value { /* variables of this type */

long int i value; /* can be used as either */
float f value; /* long int or float */

}i

13




union

union value { /* variables of this type */
long int i value; /* can be used as either */
float f value; /* long int or float */

}i

union value data;
data.i value = 10;

Union allows us to “legally” give variables
multiple types.

Usually unnecessary on modern computers.

14




typedef

o We can also define custom types using typedef

o typedef int number;

o Now
number x;

is the same as

int x;

o More complicated typedet’s become more
useful

15




()

typedef

struct complex struct {
float real;
float imag;

}i

typedef struct complex struct complex;

/* instead of */
struct complex struct x,y,z;

/* we can write */
complex X,V,2z;

16




EI1UIl

o Sometimes we encode values as int’s just
because they’re one of the most basic types.

o const int FIRSTYEAR = 0, SOPHOMORE

=1,
JUNIOR = 2, SENIOR = 3, GRAD = 4;

» This is convenient so we can write things like:
bert.class = GRAD;
/* instead of */
bert.class = 4;
/* which can be confusing. */

17




EI1UIl

» enum does this cleanly, producing a new type

o enum class { FIRSTYEAR, SOPHOMORE, JUNIOR, SENIOR,
GRAD };

o class bertsClass = GRAD;

18




Programming Tips

» Understand the problem and the solution
before you code.

» Be able to express in English how you plan
on solving the problem

o Test incrementally

» Write your code in pieces and test each
piece as you build your program.

19




Programming Tips

» If you don’t know how to solve part of a
problem, abstract it and work on the rest of it.
Isolate the part you're stuck on.

» Use printf()’s to check if variables are what you
expect them to be.

o Comment your code!

20




Reading

» Seriously, start the homework

» Practical C Programming, Chapter 12

21




