
Introduction to
Computer

Science and
Programming in

C
Session 9: September 30, 2008

Columbia University

Announcements

Homework 2 is out. Due 10/14

Midterm Review on 10/16, exam on 10/21

Start the homework!

Submission procedure

2

Checking your tar file

3

Review

Finished talking about recursion

Hanoi solution: Move N discs

Move (N-1) discs out of the way

Move bottom disc to destination

Move (N-1) discs to destination

4

Today

Quick useful recursion example

Advanced types: structs, unions, typedef

Programming tips

5

File Systems

6

~/ (home)

1003

homework1 homework2

old_stuffnote.txt

hanoi.cwriteup.txtround.ctype.chello.c

Searching

search_for_file(current_dir, file)

if file is in current_dir, done!

else

for each directory sub_dir in current_dir
 search_for_file(sub_dir, file)

7

Searching

8

~/ (home)

1003

homework1 homework2

old_stuffnote.txt

hanoi.cwriteup.txtround.ctype.chello.c

Searching

Recursive search algorithm defines a
deterministic order to search.

(This method is called Depth First Search)

9

struct

Often we want to use sets of variables together.

Example: contact info of a business

float longitude, latitude;
char address[256], name[128];
int phone;

Storing like this become cumbersome when we
have more than one business.

10

struct

C comes with a special type, called a struct

struct business {
 float longitude, latitude;
 char address[256], name[128];
 int phone;
};

Access these values using . (period)
struct business wachovia;
wachovia.phone = 8005551234;
strcpy(wachovia.name, “Citigroup”);

11

struct

struct is short for data structure.

Each value inside a struct is called a field

We can treat structs as any variable

functions return structs or take as arguments

Arrays of structs (simple databases)
struct business fortune[500];

12

union

In rare cases, we need to have a data structure
that can have multiple types.

In a sense, we want to override C’s feature of
having types.

union value { /* variables of this type */
 long int i_value; /* can be used as either */
 float f_value; /* long int or float */
};

13

union
union value { /* variables of this type */
 long int i_value; /* can be used as either */
 float f_value; /* long int or float */
};

union value data;
data.i_value = 10;

Union allows us to “legally” give variables
multiple types.

Usually unnecessary on modern computers.

14

typedef
We can also define custom types using typedef

typedef int number;

Now
number x;

is the same as
int x;

More complicated typedef’s become more
useful

15

typedef

struct complex_struct {
 float real;
 float imag;
};
typedef struct complex_struct complex;

/* instead of */
struct complex_struct x,y,z;

/* we can write */
complex x,y,z;

16

enum

Sometimes we encode values as int’s just
because they’re one of the most basic types.

const int FIRSTYEAR = 0, SOPHOMORE = 1,
 JUNIOR = 2, SENIOR = 3, GRAD = 4;

This is convenient so we can write things like:
bert.class = GRAD;
/* instead of */
bert.class = 4;
/* which can be confusing. */

17

enum

enum does this cleanly, producing a new type

enum class { FIRSTYEAR, SOPHOMORE, JUNIOR, SENIOR,
 GRAD };

class bertsClass = GRAD;

18

Programming Tips

Understand the problem and the solution
before you code.

Be able to express in English how you plan
on solving the problem

Test incrementally

Write your code in pieces and test each
piece as you build your program.

19

Programming Tips

If you don’t know how to solve part of a
problem, abstract it and work on the rest of it.
Isolate the part you’re stuck on.

Use printf()’s to check if variables are what you
expect them to be.

Comment your code!

20

Reading

Seriously, start the homework

Practical C Programming, Chapter 12

21

