
Introduction to
Computer

Science and
Programming in

C
Session 17: October 30, 2008

Columbia University

Announcements

Homework 3 is out. Due date extended to
November 11th.

Check hw2 submission files.

2

Review
Pointers and arrays behave similarly (in C)

Memory Management

(<type>) malloc(N) ;
Asks OS to give you N bytes of space, cast as
<type>, returns pointer

free(<pointer>);

Memory leaks
3

Today

big-O notation

Sorting algorithms

4

Measuring
Algorithms

In Computer Science, we want to be able to
describe the running time and memory
requirements of our algorithms

A couple challenges:

Running time and space typically depend on
input size

Algorithms are run on different machines

5

Measuring
Algorithms

For varying input sizes, we can write our time
and space requirements as functions of N.

For varying implementation, we need our
description to not care about constant factors.

6

Example

What is the running time of a function that
sums an array of size 5 on a machine that takes
2 seconds to add numbers?

What if array is size N?

What if it takes c seconds to add?

7

4 * 2 = 8

2(N-1)

c(N-1)

Big-O

g(n) = O(f(n))
means that for some c
g(n) ≤ c(f(n))

In other words, big-O means less than some
constant scaling.

In big-O notation, what is the running time to
sum an array of size N? c(N-1) =

8

O(N)

More Examples

Space requirements for a 2-d NxN array?

Space requirements for 10 2-d NxN arrays?

Time required to set a char to ‘a’?

9

Sorting

One of the most studied problems in CompSci

We are given N numbers

Put the numbers in order

least to greatest, greatest to least,
alphabetical, etc.

compare two numbers at at time

10

Algorithm for Sorting

In English: Given 50 index cards with numbers
on them, how do you put them in order?

Lots of different algorithms. We’ll go over three

11

Bubble Sort

Worst algorithm ever

Start at beginning of deck

Compare current and next cards. If next card
should be before current, swap. Move to next
card.

Keep passing through deck until no more
swaps necessary.

12

Bubble Sort Example

4 3 0 2 1
3 4 0 2 1
3 0 4 2 1
3 0 2 4 1
3 0 2 1 4
0 3 2 1 4
0 2 3 1 4
0 2 1 3 4

0 2 1 3 4
0 2 1 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
Worst
Algorithm
Ever

13

Selection Sort

Smarter cousin of Bubble Sort

Find the smallest unsorted card

Swap smallest with the first unsorted card

Consider that card sorted, and repeat

14

Selection Sort Ex.

4 3 0 2 1
4 3 0 2 1
4 3 0 2 1
4 3 0 2 1
4 3 0 2 1
0 3 4 2 1
0 3 4 2 1
0 3 4 2 1

0 3 4 2 1
0 3 4 2 1
0 1 4 2 3
0 1 4 2 3
0 1 4 2 3
0 1 4 2 3
0 1 2 4 3
0 1 2 4 3

0 1 2 4 3
0 1 2 3 4

15

Selection Sort Ex. 2

16

4 3 0 2 1 minimum is 0
0 3 4 2 1 minimum is 1
0 1 4 2 3 minimum is 2
0 1 2 4 3 minimum is 3
0 1 2 3 4 minimum is 4

Merge Sort

If deck is 2 or less cards, just sort and return

Split deck into two halves

Merge Sort each half-deck (recursion!)

Then, merge the two half-decks:

Look at top of each deck. Take the smallest of
the two. Repeat until decks are combined.

17

Merge Sort Example

(4-3-0-2-1)
(4-3) (0-2-1)
(3-4) (0-2-1)
(3-4) ((0) (2-1))
(3-4) ((0) (1-2))
(3-4) (0-1-2)
(3-4) (1-2) (0)
(3-4) (2) (0-1)

(3-4) (0-1-2)
(4) (0-1-2-3)
(0-1-2-3-4)

18

Running time

Bubble Sort: O(N^2)

Selection Sort: O(N^2)
But the algorithm seems better organized.

Merge Sort: O(N log(N))

19

Vote
20

