
Introduction to
Computer

Science and
Programming in

C
Session 13: October 14, 2008

Columbia University

Announcements

Homework 2 is due.

Midterm Review next class (10/16).
Exam on 10/21

Bert’s office hours today moved to
Wednesday 10/15, 1-3 PM (or by appointment)

2

Review

Bit operators:

&, |, ^, ~, <<, >>

and, or, xor, not, left-shift, right-shift

Using masks to manipulate individual bits

3

Today

C Libraries

4

C Libraries

In addition to built-in C commands, operators,
C installations provide a standard library of
functions, types, macros.

The standard library is not considered part of
C itself, but all ANSI C installations have it.

ANSI - American National Standards Institute

5

C Libraries

The standard library allows us to abstract
away many machine-specific implementations.

Using the library, we don’t have to worry
about how to implement common functions on
different computers

We will see specific examples of this as we go
through the libraries

6

Library Headers

We access the standard libraries by using the
#include preprocessor command to include the
header of the library

For example, our favorite library header:
#include <stdio.h>

7

stdio.h

Standard input and output

FILE, printf(), fprintf(), fscanf(), etc.

Provides access to keyboard input, terminal
output, and file system on any computer

8

string.h

strcpy(A,B); /* copy string B into A */

strcat(A,B); /* put B in A after A (concatenate)*/

strcmp(A,B); /* check if A is equal to B (compare)*/

strlen(A); /* returns length of A */

strtok(A,B);
/* Useful for splitting long strings into pieces, or
tokens. The usage is complicated, so don’t worry
about this one for now. */

9

ctype.h

10

/* Utility functions to check for types of char’s */

isalpha(c); /* check if c is an alphabet character
 ‘a’-’z’, ‘A’-’Z’ */

isdigit(c); /* check if c is digit ‘0’-’9’ */

isalnum(c); /* isalpha(c) or isdigit(c) */

iscntrl(c); /* control char (i.e. \n, \t, \b) */

islower(c); isupper(c) /* lowercase/uppercase */

d = tolower(c); d = toupper(c)
/* convert to lowercase or uppercase */

math.h

11

Provides the basic scientific calculator
functions.

Often needs to be specially linked when
compiling because takes advantage of
specialized math hardware in processor.

gcc -lm myProgram.c -o myProgram

math.h

12

sin(x); cos(x); tan(x);

asin(x); acos(x); atan(x); /*{sin, cos, tan}^(-1)*/

exp(x); log(x); log10(x);
/* e^x, natural and base-10 log */

pow(x,y); /* x^y */

sqrt(x); /* square root */

ceil(x); floor(x); /* closest int above or below */

fabs(x); /* absolute value */

stdlib.h

13

Lots of utility functions

atof(<string>); /* convert string to float */
atoi(<string>); /* convert string to int */

x = rand();
/* returns a (pseudo) random int between 0 and
constant RAND_MAX */

srand(<unsigned int>); /* seeds rand generator */

malloc(); free(); /* memory management */

system(<string>); /* runs string in OS */

assert.h

14

Provides a macro to check if critical conditions
are met during your program:

assert(<boolean expression>);

/* if the expression is false, the program will
print to stderr:
Assertion failed: <expression>, file <filename>,
line <line number>
*/

Provides a nice way to test programs.

limits.h + float.h

15

Contain various important constants such as
the minimum and maximum possible values
for certain types, sizes of types, etc.

CHAR_BIT (bits in a char)
INT_MAX, CHAR_MAX, LONG_MAX
 (maximum value of int, char, long int)
INT_MIN, CHAR_MIN, LONG_MIN
FLT_DIG (decimal digits of precision)
FLT_MIN, FLT_MAX (min. and max. value of float)
DBL_MIN, DBL_MAX (and of double precision float)

time.h

16

Provides new type to represent time, time_t

time_t time(NULL); /* returns current time */

time_t clock();
/* returns processor time used by program since
beginning of execution */

strftime(A, sizeof(A), “formatted text”, <time_t>);
/* format text with placeholders:
%a weekday
%b month
%c date and time
%d day of month
%H hour ...and many more */

A few more

stdarg.h - allows you to create functions with
variable argument lists (such as printf).

signal.h - provides constants and utilities for
standardized error codes for when things go
wrong

setjmp.h - allows you to jump to anywhere in
your code. NEVER use this.

17

Reading

The user’s manual for all the functions are in
The C Programming Language, Appendix B

(Flip through it to get a feel.
Don’t try to read it all)

18

