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ABSTRACT 
Multiple-monitor computer configurations significantly 
increase the distances that users must traverse with the 
mouse when interacting with existing applications, resulting 
in increased time and effort. We introduce the Multi-
Monitor Mouse (M3) technique, which virtually simulates 
having one mouse pointer per monitor when using a single 
physical mouse device. M3 allows for conventional control 
of the mouse within each monitor's screen, while permitting 
immediate warping across monitors when desired to in-
crease mouse traversal speed. We report the results of a 
user study in which we compared three implementations of 
M3 and two cursor placement strategies. Our results suggest 
that using M3 significantly increases interaction speed in a 
multi-monitor environment. All eight study participants 
strongly preferred M3 to the regular mouse behavior. 
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INTRODUCTION 
Increased display size and resolution and the proliferation 
of multiple-monitor display configurations have signifi-
cantly extended the amount of desktop space available to 
computer users. However, increased desktop space forces 
users to move their mouse cursor over larger distances.  To 
compensate, users can increase pointer speed or accelera-
tion, which have drawbacks pointed out by Baudisch et al. 
[3]. In addition, tiling several displays in a row often results 
in one dimension (typically width) being drastically larger 
than the other, causing excessive “clutching” when travers-
ing multiple displays with a mouse. 

While the operating system considers the multi-monitor 
desktop as one seamless environment, previous research by 
Grudin [6] clearly suggests that users treat multi-monitor 
systems as means of partitioning their desktop space. This 
is primarily due to the physical gaps between monitors, but 
differences in resolution, size, and apparent mouse speed 
can also contribute towards this mental partitioning. As 
Grudin points out, users have a tendency to distribute tasks 

among monitors, treating them as separate, but connected, 
spaces, and only rarely do they straddle an application win-
dow across multiple physical displays. 

This research inspired us to create Multi-Monitor Mouse 
(M3), a pointer interaction technique that warps the pointer 
between screens in a multi-monitor system configuration. 
M3 simulates having one independent mouse pointer per 
screen, using a single physical mouse device.  

RELATED WORK 
Improving target acquisition across multiple monitors has 
been explored in context with eliminating warping effects 
caused by mismatched monitor alignment and differing 
screen resolutions with mouse ether [1], as well as avoiding 
the need to cross the bezels by bringing the targets closer to 
the current cursor location with drag-and-pop [2]. Baudisch 
et al. also proposed visual enhancements, such as high-
density cursor [3], that increase visibility of cursors at high 
speeds. Interactions that warp the pointer closer to a target 
location have previously been explored on a single monitor 
in combination with eye gaze (e.g., [8] and MAGIC point-
ing [9]) or hand gestures (e.g., flick [5]). Zhai, Smith, and 
Selker compared one- and two-handed techniques for com-
pounding tasks of scrolling and pointing [10]. 

MULTI-MONITOR MOUSE 
We have implemented M3 as a Windows application that 
runs in the background, minimized to the system tray. 
When M3 is launched, it reads the system’s information 
about the size, number and relative location of attached 
screens and forms a corresponding set of virtual frames to 
represent the screens. When the user issues a frame switch 
command, M3 warps the mouse pointer to the new frame 
(screen). The new location of the cursor is signaled to the 
user by invoking the “mouse sonar” animation around the 
pointer (Figure 1b), a built-in Windows option that en-
hances pointer visibility. Otherwise, pointer movement is 
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Figure 1: a) Using standard pointer movement to move 
between monitors from S to T. b) M3 warps the cursor 
(dashed line) to the next screen, reducing the distance trav-
ersed by conventional mouse movement. “Sonar” circles 
are displayed to increase cursor visibility. 



completely unaffected by M3. (For example, the user is still 
free to move the pointer across screen boundaries by physi-
cally moving the mouse, but now has the option of directly 
warping to a different screen.)  

M3 segments the pointer space according to screen space 
divisions, thus allowing for pointer warping across screens. 
While the techniques presented in this paper have been ap-
plied to switching between screens in a multi-monitor con-
figuration, the same techniques, without modification, can 
be applied to any desktop space by dividing it into a set of 
virtual rectangular frames. These frames can be of arbitrary 
number and size, and can even overlap. For example, a 
large high-resolution monitor could be divided into several 
virtual frames, each containing the windows for one appli-
cation. M3 would in this case switch the mouse pointer be-
tween different applications.  

M3 FRAME SWITCH ALTERNATIVES 
We have experimented with several switch designs. Two of 
the final four designs (mouse button and keyboard switches) 
require only standard computer peripherals, thus making 
them easy for most computer users to adopt. The other two 
(head orientation and mouse location switches) support 
more direct switching, but require extra equipment.  

Mouse Button Switch 
The mouse button switch command is issued by pressing 
one of the two side buttons (XButtons) on the five-button 
Microsoft IntelliMouse Explorer mouse. Since multi-
monitor configurations are typically side-by-side arrange-
ments, we decided to map the top side button to advance the 
frames forward (clockwise), and the bottom side button to 
advance the frames backward (counterclockwise). This de-
cision is technically arbitrary, but we believe that it has 
ecological validity in that it mimics the behavior of the 
mouse itself when those side buttons are pushed: Pushing 
the top button would tend to rotate the whole mouse clock-
wise, while pushing the bottom button would have a coun-
terclockwise effect. The virtual frames form a loop, making 
it possible to cycle through all the screens using just one of 
the buttons. 

Keyboard Switch 
The keyboard switch is modeled after a built-in Windows 
task-switch command (ALT+TAB). We mapped the for-
ward frame switch to the ALT+“~” key combination, and 
backwards to ALT+SHIFT+“~”. As with the mouse button 
switch, looping is supported and it is possible to use just 
one key combination to switch among all screens. This 
mode, although implemented, was not evaluated in our tests 
because of its similarity to mouse button switch.  

Head Orientation Switch 
By observing the work of several individuals in a multi-
display environment, we noticed that a user’s head position 
does not change much, but their head orientation changes 
continuously, depending upon the screen on which they are 

working. At a constant working distance from the user, the 
larger the screens, the larger the horizontal angle subtended 
by each screen that can be reliably measured with an abso-
lute orientation sensor. We outfitted a pair of headphones 
with a 3DOF orientation sensor (InterSense InertiaCube2) 
and measure the user’s head orientation to determine the 
screen at which they are looking. When the user turns their 
head towards another screen, the head orientation switch 
performs a frame switch.  

While 6DOF tracking combined with eye-gaze tracking 
would reduce errors, we wanted to design a minimally inva-
sive switch that would perform well with minimal calibra-
tion time. We have noticed that while eye gaze alone is 
sometimes used to glance at another screen, users tend to 
align their head with a monitor when performing tasks on 
its screen (especially with the larger, 24" diagonal, monitors 
we used), which supports our head orientation switch solu-
tion. In general, our technique is similar to MAGIC point-
ing [9], insofar as it warps the pointer to the area “in focus” 
(in our case, a screen), followed by fine selection by mouse 
movement alone. However, while MAGIC pointing warps 
the pointer within one screen whenever the eye gaze 
changes, we warp only across frame boundaries and leave 
all mouse manipulation within a single screen unchanged.  

Mouse Location Switch 
The last switching method we implemented is based on the 
idea that every screen could have a corresponding mouse-
pad. The user still manipulates only one physical mouse, 
but physically placing the mouse on a different pad warps 
the cursor to the screen corresponding to that pad.  We im-
plemented mouse location switch using a touch-sensitive 
surface (MERL DiamondTouch table) on which the user 
can define any axis-aligned rectangle as a pad for a given 
screen. To aid the user in remembering the locations of the 
virtual mouse pads, we provided paper mouse-pad cutouts 
to be placed on the surface (Figure 2). Since the table oper-
ates through electrostatic coupling, the mouse is wrapped in 
aluminum foil to allow it to be tracked by the Diamond-
Touch surface when held by the user. 

M3 POINTER-PLACEMENT STRATEGIES 
In addition to deciding on how to trigger the frame switch, 
there are several possibilities for where to warp the mouse 
cursor in the target frame after the frame switch has oc-

Figure 2: M3 test setup consisting of four monitors and four 
corresponding “mouse pads” used by mouse location 
switch. The background is set to an inactive spreadsheet 
image to simulate a typical noisy working environment. 



curred. After some preliminary experimentation, three 
strategies emerged as plausible candidates: fixed location, 
frame-relative, and frame-dependent.  

Fixed-Location Placement Strategy 
Our initial implementation of M3 used the single fixed-
location placement strategy of always warping the cursor to 
the center of the next frame (Figure 3a). While the center 
location is somewhat arbitrary, it does ensure that the 
maximum mouse traversal distance after the frame switch 
will always be at most half of the frame’s diagonal. This 
can be beneficial if users distribute their tasks equally 
around the center, which is often the case with active work-
ing windows. However, it can be a nuisance when the target 
is located near an edge, which is the case for some frequent 
selection tasks, such as accessing the taskbar. In our current 
M3 implementation, it is possible to select any fixed loca-
tion as the warping target, as long as that location is avail-
able on all frames.  

Frame-Relative Placement Strategy 
Frame-relative placement works by translating the pointer 
to the next frame at the same location relative to the new 
frame’s upper left corner as it was relative to its old frame’s 
upper left corner (Figure 3b). This strategy essentially col-
lapses the entire available space into one frame of mouse 
movement and is the only strategy we implemented in 
which the effect of pointer movement prior to the frame 
switch will not be negated by the switch itself.  

Frame-Dependent Placement Strategy 
If all frames are considered as completely independent 
spaces, the system can remember the last location of the 
cursor in each frame and warp the incoming cursor to that 
location. Thus, the last position of the cursor when the user 
warps out of the frame, becomes the starting location when 
the user eventually warps back to that frame (Figure 3c). 
This frame-dependent placement strategy, while preferred 
by some initial test users in the two-monitor setup, was not 
formally evaluated for four monitors, due to its increasing 
difficulty as the number of frames increases. This is pre-
sumably due to the memory load imposed on the user hav-
ing to remember each frame’s cursor position.  

USER STUDY 
Eight right-handed participants (6 male, 2 female, ages 23–
32), all unfamiliar with the techniques, participated in a 
target-selection experiment, with a counterbalanced within-
subject design. We decided to test regular unassisted mouse 
interaction (CTRL mode) with three M3 frame-switch 
modes: mouse button (MB), head orientation (HEAD), and 
mouse location (ML). We tested each switch mode using 
two pointer-placement strategies: frame-relative (FR) and 
center fixed-location (C). This resulted in a total of seven 
different conditions. Each user was allowed to familiarize 
themselves with all mouse behaviors, and performed a 
block of 10 practice trials before completing the block for 
each condition. Each block consisted of five trials for each 

of three different start-target distances and two directions 
(right and left) for a total of 30 movements per block. 

Our hypothesis was that participants would acquire targets 
faster when using M3 relative to the control mode as the 
number of screen bezels that needed to be crossed in-
creased. In addition, we speculated that the users would be 
faster using the frame-relative strategy rather than the cen-
ter fixed-location strategy because of the utility of move-
ment prior to the frame switch in the former strategy.  

The experiment was conducted on a Dual Xeon (2.6GHz, 
2GB RAM) computer running Windows XP, with four 
monitors tiled in a horizontal arrangement, driven by two 
ATI Radeon 9800 and 9000 graphics cards. All four moni-
tors were Samsung SyncMaster 240T (24" diagonal, 
1920×1200 resolution, 60Hz refresh), for a total desktop 
space of 7680×1200 pixels. The monitors were arranged in 
a semicircle of 80cm radius, with 12cm horizontal separa-
tion (including bezels) between each monitor’s display, and 
the user was seated in the center to ensure equal distance 
and viewing angle to all monitors (Figure 2). Thus, each 
display occupied a 35° horizontal viewing angle with 8° 
separation. The mouse speed was set to the medium setting. 

The task was based on a Fitts’ Law target acquisition task 
[7], but without any variation of start and target sizes (fixed 
at 30 pixels square). To eliminate target discovery over-
head, we presented the participant with both start and target 
buttons at the same time, asked them to locate both before 
starting a trial, and recorded the time it took between click-
ing on the start button and clicking on the target button. We 
selected distances of 2134, 4047, and 5956 pixels, such that 
each required crossing one, two, or three bezels, respec-
tively. To eliminate strategy bias, each target was located 
exactly halfway between the center of the screen and the 
frame-relative location of the start button on that target 
screen (Figure 4). The direction varied between left-to-right 
and right-to-left.  

Figure 3: Traversing between S, T1 and T2 locations using 
different M3 pointer placement strategies: a) fixed-location 
(center), b) frame-relative, c) one of many possible frame-
dependent scenarios. Dashed lines indicate warping; solid 
lines indicate conventional movement. 



Results 
Movement times were first cleared by removing outliers 
(movement times more than two standard deviations larger 
than the mean for each condition), which accounted for less 
than 3.5% of all the trials. All data analysis was performed 
on a median movement time for each participant, distance, 
direction, and condition combination. We performed a 7 
(Condition) × 2 (Direction) × 3 (Distance) ANOVA, with 
our subjects as a random variable. There were significant 
main effects for all three factors. The Direction factor con-
tained a significant main effect, F(2,14)=82.72, p<<0.001: 
transitioning left-to-right was on average 0.2s faster than 
going right-to-left, which is consistent with previous re-
search showing that right-handed users performed mouse 
movements faster from left-to-right than from right-to-left 
when using their right hand [4].  

The mean movement times across Condition, F(6,42)=3.88, 
p<0.01, are shown in Figure 5(a). The interaction of Dis-
tance and Condition (Figure 5b) also had significant effects, 
F(12,84)=9.509, p<<0.001. As predicted, in all cases the 
FR strategy outperformed the C strategy by an average of 
0.1s, which we believe is due to the C strategy discarding 
pointer movement prior to the frame switch. Of the M3 
modes using the FR strategy, MB (1584ms) was the fastest 
compared with CTRL (1906ms), presenting a 17% im-
provement in performance. MB was followed by HEAD 
(1698ms) and ML (1710ms), which were both significantly 
faster than CTRL. It is interesting to notice that for the 
shortest distance (2134 pixels) there were no significant 
differences between movement times across conditions. All 
of the M3 performance gains come from time saved when 
traversing two bezels or more, with the biggest gains (up to 
29%) being present at the largest distance (5965 pixels).  

In the post-experiment questionnaire, all subjects strongly 
preferred some M3 mode to the CTRL condition, and 6 out 
of 8 users preferred the FR strategy over the C strategy. 
While 7 out of 8 users preferred the MB mode over all the 
other modes, some mentioned that they would actually pre-
fer a combination of HEAD and MB modes, in which the 
screen switch is triggered with the mouse button, but the 
cursor warps directly to the screen at which they are look-
ing. This combination would resolve the “Midas touch” 
issue of pure HEAD mode, and also eliminate the multiple 
clicks necessary to switch across more than one screen.  

CONCLUSIONS 
Our user study confirmed that M3 can improve target acqui-
sition performance in multi-monitor systems; as predicted, 
the effect was higher with increased distance and FR strat-
egy. Subjective evaluations show a strong preference for 
M3 over regular mouse pointing, and we believe that the 
performance advantage could significantly increase with 
experience. In future work, we would like to evaluate addi-
tional M3 modes and strategies, as well as implement a hy-
brid mouse button + head orientation switch mode. 
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Figure 4: Start (S) and target (T) button layout in our user 
study. To eliminate strategy bias, T is located at the half-
way point between the warping locations for frame-relative 
(fr) and center fixed-location (c) strategies. Control path 
(ctrl) is also shown.  

Figure 5: Aggregated movement times (ms) with 95% con-
fidence intervals: a) Condition factor, b) Interaction of 
Distance and Condition. 
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