The Significance of Errors to Parametric Models of Language Acquisition

Paula Buttery
Natural Language and Information Processing Group
Computer Laboratory, Cambridge University
paula.buttery@cl.cam.ac.uk
Classification of Language Examples

Children become fluent despite lack of formal language teaching.

Not every utterance heard is a valid example of the environment language.

How can the child know which utterances are valid?

Every time a child mis-classifies an utterance as valid we get an error.
Sources of Error

- Accidental Errors: lapses of concentration, slips-of-the-tongue, interruptions.
- Ambiguous Environments: bi-lingual environments, diglossia, language change.
- Indeterminacy of Language:
 - Indeterminacy of meaning: “John kissed Kate” vs. “Kate was kissed by John”
 - Indeterminacy of parameter settings: SVO vs. SOV with v2

Require a learning model to attempt to learn from every utterance and be unaffected by misclassification errors.
The Numbers Game

Game with 2 players:

- Player One: thinks of a set of numbers that can be defined by a rule.
- Player Two: attempts to discover the rule defining the set.

Only information available to player two is a stream of examples from player one.
Deterministic Learners

Gibson and Wexler’s Trigger Learner:

- Algorithm:
 - attempt to parse with current parameters;
 - change one parameter;
 - adopt new settings if we can analyze an utterance that was previously not analyzable.

- Problems:
 - local maxima;
 - worse case scenario - last utterance seen is an error.

A Robust Learning System

SPEECH PERCEPTION SYSTEM

SEMANTIC MODULE

SYNTACTIC MODULE

UNIVERSAL GRAMMAR MODULE

CATEGORY PARAMETER MODULE

LEXICON

audio signal

word symbols

semantic hypotheses

observations

LEXICON

Paula Buttery, 03/2004
Cross Situational Techniques:

Constraining Hypotheses with Partial Knowledge:
If learner knows that: “cheese” \leftrightarrow cheese
and on hearing “Mice like cheese” hypotheses:

\begin{align*}
\text{like}(mice, \text{cheese}) \\
\text{madeOf}(\text{moon}, \text{cheese}) \\
\text{madeOf}(\text{moon}, \text{cake})
\end{align*}

then we can rule out madeOf(moon, cake)
Hypothesizes categorial grammar categories for a word:

- **Forward Application (>)**
 \[X/Y \quad Y \rightarrow X \]

- **Backward Application (<)**
 \[Y \quad X\backslash Y \rightarrow X \]

\[
\begin{array}{ccc}
\text{Kim} & \frac{\text{likes}}{(s\backslash np)/np} & \text{Sandy} \\
\frac{np}{np} & \frac{s\backslash np}{s\backslash np} & np \\
\frac{s}{s} & > & < \\
\end{array}
\]
Typing Assumption: the semantic arity of a word is usually the same as its number of syntactic arguments.

\[\text{verb}(\text{arg1}, \text{arg2}) \mapsto a \mid b \mid c \]
The Universal Grammar

Underspecified inheritance hierarchy:

- Categorial Parameters: 60 parameters
 - one per legal syntactic category
- Word Order Parameters: 18 parameters
 - e.g. subject direction parameter (SVO,SOV vs. OVS,VSO)

Universal Grammar module consulted whenever syntactic learner returns a valid syntactic category for every word.
The Sachs Corpus

Natural interactions of a child with her parents:

- Real child-directed utterances - child’s utterances removed;
- Corpus modeled by Villavicencio;
- Annotated with semantic representations.

Exp. 1: Indeterminacy of Meaning

Increasing numbers of semantic hypotheses per utterance:

- Extra hypotheses chosen randomly.
- Correct semantic expression was always present in the set.
- Hypothesis sets of sizes 2, 3, 5, 10 and 20.
Exp. 1: Indeterminacy of Meaning

![Graph showing the relationship between F1 and the number of hypotheses per set.](image)
Exp. 2: Indeterminacy of Parameter Settings

Misclassification due to thematic role: “He likes fish”
Possible interpretations:

- likes(he, fish) - SVO
- likes(fish, he) - OVS

Learner was exposed to increasing amounts of misinterpreted thematic role (0% to 50% of all occurrences)
Exp. 2: Indeterminacy of Parameter Settings

- mis-classification varied between 0% and 50% at 10% intervals:
 - 9 word-order-parameters set;
 - 13.5 word-order-parameters correct according to target (due to inheritance).
 - 45% difference in speed of convergence between error-free and maximum thematic-role-error case.
Conclusions

Errors due to misclassification of language examples are likely.
Deterministic parametric learners have problems handling errors.
A statistical error-handling learner may be robust to errors.
Indeterminacy of language is just another case of misclassification.

Natural Language and Information Processing Group: www.cl.cam.ac.uk/users/ejb/
email to: paula.buttery@cl.cam.ac.uk.