Data Structures in Java

Lecture 21: Introduction to NP-Completeness

12/9/2015

Daniel Bauer

Algorithms and Problem Solving

- Purpose of algorithms: find solutions to problems.
- Data Structures provide ways of organizing data such that problems can be solved more efficiently
- Examples: Hashmaps provide constant time access by key, Heaps provide a cheap way to explore different possibilities in order...
- When confronted with a new problem, how do we:
- Get an idea of how difficult it is?
- Develop an algorithm to solve it?

Problem Difficulty

- We can think of the difficulty of a problem in terms of the best algorithm we can find to solve the problem.
- Most problems we discussed so far have linear time solutions $\mathrm{O}(\mathrm{N})$, or slightly more than linear $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.
- We often considered anything worse than $\mathrm{O}\left(\mathrm{N}^{2}\right)$ to be a bad solution.
- For some problems we don't know efficient algorithms.
- What is the best algorithm we can hope for, for a given problem? (for instance, $\Omega(N \log N)$ for comparison based sorting).

Polynomial and Exponential Time

- Two common classes of running time for algorithms:
- Polynomial: $\mathrm{O}\left(\mathrm{N}^{k}\right)$ for some constant k .
- Exponential: $O\left(2^{\mathrm{N}^{k}}\right)$ for some constant k

Hamiltonian Cycle

- A Hamiltonian Path is a path through an undirected graph that visits every vertex exactly once (except that the first and last vertex may be the same).
- A Hamiltonian Cycle is a Hamiltonian Path that starts and ends in the same node.

Hamiltonian Cycle

- Can check if a graph contains an Euler Cycle in linear time.
- Surprisingly, checking if a graph contains a Hamiltonian Path/Cycle is much harder!
- No polynomial time solution (i.e. $\mathrm{O}\left(\mathrm{N}^{k}\right)$) is known.

Traveling Salesman Problem (TSP)

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

TSP - How many tours are there?

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

We can visit the vertices of the graph in ANY order.

How many possibilities are there?

TSP - How many tours are there?

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

We start at D.
Because the graph is complete, we can go to any of the other $\mathrm{N}-1$ nodes.

TSP - How many tours are there?

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

We start at D.
Because the graph is complete, we can go to any of the other $\mathrm{N}-1$ nodes.

Once we decide for a node, we can go to N -2 remaining nodes.

TSP - How many tours are there?

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

We start at D.
Because the graph is complete, we can go to any of the other $\mathrm{N}-1$ nodes.

Once we decide for a node, we can go to $\mathrm{N}-2$ remaining nodes.

Once we decide for a node, we can go to $\mathrm{N}-3$ remaining nodes.

TSP - How many tours are there?

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

We start at D.
Because the graph is complete, we can go to any of the other $\mathrm{N}-1$ nodes.

Once we decide for a node, we can go to $\mathrm{N}-2$ remaining nodes.

Once we decide for a node, we can go to N -3 remaining nodes.

$$
\ldots \quad(N-1) \cdot(N-2) \cdots(1)=(N-1)!
$$

TSP - How many tours are there?

Given a complete, undirected graph $G=(V, E)$, find the shortest possible cycle that visits all vertices.

There are

$$
(N-1) \cdot(N-2) \cdots(1)=(N-1)!
$$

possibilities, but we can traverse complete tours in either direction.
There are $\frac{(N-1) \text { ! }}{2}$ complete tours.

TSP - Brute Force Approach

Try all possible $\frac{(N-1)!}{2}$ tours and return the shortest one.

Obviously this algorithm runs in $O(N!)$

TSP - Brute Force Approach

Try all possible $\frac{(N-1)!}{2}$ tours and return the shortest one.

Obviously this algorithm runs in $O(N!)$

Better algorithm:
Dynamic Programming algorithm byHeld-Karp (1962)

$$
O\left(2^{N} N^{2}\right)
$$

No polynomial time algorithm is known!

TSP - Greedy Approximation

How about a greedy approximation?

Start with node D, always follow the lowest edge until all vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

Start with node D, always follow the lowest edge until all vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

Start with node D, always follow the lowest edge until all vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

Start with node D, always follow the lowest edge until all vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

Start with node D, always follow the lowest edge until all vertices have been visited.

Unfortunately, this is not guaranteed to find an optimal solution.

$$
\text { cost }=36
$$

TSP - Greedy Approximation

How about a greedy approximation?

Start with node D, always follow the lowest edge until all vertices have been visited.

Unfortunately, this is not guaranteed to find an optimal solution.

$$
\text { cost }=34
$$

Combinatorial Optimization

- Many of the graph problems we discussed are combinatorial optimization problems.
- Select the "best" structure from a set of output structures subject to some constraints.
- Examples:
- Select the minimum spanning tree from the set of all spanning trees.
- Select the lowest-cost traveling salesman tour from the set of possible tours through a complete graph.

Bin Packing Problem

- You have:
- N items of sizes $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{N}}$
- Any number of bins of fixed size V .
- Goal: pack the items into bins such that the number of bins needed is minimized. The sum of the item sizes in each bin must not exceed V .

Bin Packing Problem

- You have:
- N items of sizes $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}}$
- Any number of bins of fixed size V .
- Goal: pack the items into bins such that the number of bins needed is minimized. The sum of the item sizes in each bin must not exceed V.

Knapsack Problem

Knapsack Problem

- Given N items, each with a value v_{i} and a weight w_{i}.
- Select a subset of the items to pack in a knapsack, such that
- the total weight does not exceed some limit W
- the sum of values is maximized.

Decision Problems

- A decision problem has, for each input, exactly two possible outcomes, YES or NO.
- "Does this Graph contain an Euler Circuit" "Does this Graph contain a Hamiltonian Cycle"

From Combinatorial Optimization to Decision Problems

- Any combinatorial optimization problem can be rephrased as a decision problem by asking if a decision that is better than a certain threshold exists.
- For instance, for TSP:
"Is there a simple cycle that visits all vertices and has total cost $\leq K$ "
- Observation:

Solving the optimization problem is at least as hard as solving the decision problem.

Deterministic and Non-Deterministic Machines

- The "state" of a computation consists of all current data (input, memory, CPU registers, ...) and the last program instruction.
- Given any state, a deterministic machine goes to a unique next instruction.

Deterministic and Non-Deterministic Machines

- A non-deterministic machine could be in ANY number of states at the same time.
- Equivalently, a non-deterministic machine contains an "oracle" that tells it the optimal instruction (of several multiple instructions) to execute in each state.

TSP with an Oracle

- State of the computation: Visited nodes, previous path.
- Same algorithm as greedy algorithm, but now the oracle tells us which edge to follow next.

TSP with an Oracle

- State of the computation: Visited nodes, previous path.
- Same algorithm as greedy algorithm, but now the oracle tells us which edge to follow next.

TSP with an Oracle

- State of the computation: Visited nodes, previous path.
- Same algorithm as greedy algorithm, but now the oracle tells us which edge to follow next.

TSP with an Oracle

- State of the computation: Visited nodes, previous path.
- Same algorithm as greedy algorithm, but now the oracle tells us which edge to follow next.

Unfortunately, a real oracle is not realistic.
(But we can have a limited amount of parallelism).

The Class of NP Problems

- NP (Nondeterministic Polynomial Time) is the the class of problems for which a polynomial running time algorithm is known to exist on a nondeterministic machine.
- How do we know that a problem is in NP.
- Are there problems that are not in NP?

How Do We Know If a Problem Is in NP?

- Assume a decision problem produces YES on some input and some proof/"certificate" for this result.
- A decision problem is in NP if we can verify, in deterministic polynomial time, that the proof for a YES instance is correct.
- Examples:
- An algorithm determines that a graph contains a Hamiltonian cycle and provides such a cycle as proof.
- A spanning tree of cost < K is proof that such a spanning tree exists in a graph.

Undecidable Problems

- Are there problems that are impossible to solve?
- Halting Problem:
- Given a program description and some input, determine if the program will terminate (halt) or run forever (loop).

This problem is recursively undecidable.
Turing 1936

The Halting Problem

- Assume we wrote a program called $\operatorname{HALT}(p, i)$
- HALT outputs "YES" and halts if p halts on i.
- HALT outputs "NO" and halts if p loops on i.

The Halting Problem

Write another program called LOOP(q)

- LOOP halts if HALT(q,q) returns "YES"
- LOOP loops if $\operatorname{HALT}(q, q)$ returns "NO"

The Halting Problem

What happens if we run LOOP(LOOP)?

- Assume LOOP(LOOP) halts
- Then HALT(LOOP,LOOP) must have returned "NO".
- Assume LOOP(LOOP) loops.
- Then HALT(LOOP,LOOP) must have returned "YES".

A decidable problem that is (probably) not in NP

- Consider the problem of deciding if a graph does NOT have a hamiltonian cycle.
- No NP algorithm is known for this problem.
- Intuitively, a proof would require to list all possible cycles. Verifying the proof means to show that none of them is Hamiltonian, one by one.

NP Problems

Decidable Problems

NP Problems

Undecidable Problems

P and NP Problems

- The class P contains all problems that are solvable in polynomial time on a deterministic machine (most of the problems discussed in this course are in P).
- Clearly, all problems in P are also in NP.
- Surprisingly, it is unknown if there are problems in NP (i.e. with proofs that can be verified in polynomial time), that cannot be SOLVED in polynomial time.

$$
P=N P \quad \text { vs. } \quad P \neq N P
$$

P and NP Problems

Decidable Problems

NP Problems
if $P \neq N P$

P and NP Problems

Decidable Problems

> P = NP Problems
if $P=N P$

NP-Complete Problems

- An NP problem is NP-Complete if it is at least as hard as any problem in NP.
- How de we know that a given problem p is NP complete?
- Any instance of any problem q in NP can be transformed into an instance of p in polynomial time.
- This is also called a reduction of \mathbf{q} to \mathbf{p}.

Reductions

- Provide a mapping so that any instance of q can be transformed into an instance of p.
- Solve p and then map the result back to q.
- These mappings must be computable in polynomial time.

Problem Classes

Decidable Problems

NP Complete

NP Problems
if $P \neq N P$

Importance of the NP-Complete Class

- Any other problem in NP can be transformed into an NP-Complete problem.
- If a polynomial time solution exists for any of these problems, there is a polynomial time solution for all problems in NP!
- To show that a new problem is NP-Complete, we show that another NP-complete problem can be reduced to it.

P and NP Problems

Decidable Problems

$$
P=N P=N P \text { Complete }
$$

$$
\text { if } P=N P
$$

Example Reduction

- Assume we know the Hamiltonian Circuit problem is NP-Complete.
- To show that TSP is NP-Complete, we can reduce Hamiltonian Circuit to it.

Hamiltonian Circuit (known to be NP-Complete)
Traveling Salesman Problem

Reducing Hamiltonian Circuit to TSP

- We want to know if the input graph $G=(V, E)$ contains a Hamiltonian Circuit.
- Construct a complete graph G' over V.
- Set the cost of all edges in G^{\prime} that are also in E to 1.0. Set the cost of all other edges to 2.0.

Reducing Hamiltonian

 Circuit to TSP

Input graph G for Hamiltonian Circuit

Input graph G' for TSP

- Resulting TSP decision problem:
- Does G' contain a TSP tour with cost $\leq|\mathrm{V}|$
- G contains a Hamiltonian Circuit if and only if G' contains a TSP tour with cost $=|V|$

