
Data Structures in Java
Lecture 21: Introduction to NP-Completeness

12/9/2015

Daniel Bauer

Algorithms and Problem Solving

• Purpose of algorithms: find solutions to problems.

• Data Structures provide ways of organizing data
such that problems can be solved more efficiently
• Examples: Hashmaps provide constant time

access by key, Heaps provide a cheap way to
explore different possibilities in order…

• When confronted with a new problem, how do we:
• Get an idea of how difficult it is?
• Develop an algorithm to solve it?

Problem Difficulty
• We can think of the difficulty of a problem in terms of the best

algorithm we can find to solve the problem.

• Most problems we discussed so far have linear time solutions
O(N), or slightly more than linear O(N log N).

• We often considered anything worse than O(N2) to be a bad
solution.

• For some problems we don’t know efficient algorithms.

• What is the best algorithm we can hope for, for a given
problem?  
(for instance, for comparison based sorting).

Polynomial and Exponential
Time

• Two common classes of running time for
algorithms:

• Polynomial: O(Nk) for some constant k.

• Exponential: O(2N) for some constant kk

Hamiltonian Cycle
• A Hamiltonian Path is a path through an undirected

graph that visits every vertex exactly once (except
that the first and last vertex may be the same).

• A Hamiltonian Cycle is a Hamiltonian Path that
starts and ends in the same node.

No hamiltonian path.

Hamiltonian Cycle
• Can check if a graph contains an Euler Cycle in

linear time.
• Surprisingly, checking if a graph contains a

Hamiltonian Path/Cycle is much harder!
• No polynomial time solution (i.e. O(Nk)) is known.

No hamiltonian path.

Traveling Salesman Problem (TSP)
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

Optimal Traveling Salesman Tour through
all 48 continental state capitals. Source: SAP

TSP - How many tours are there?
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

We can visit the vertices of the graph in  
ANY order.

How many possibilities are there?

TSP - How many tours are there?
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

We start at D.
Because the graph is complete,  
we can go to any of the other N-1 nodes.

TSP - How many tours are there?
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

We start at D.
Because the graph is complete,  
we can go to any of the other N-1 nodes.

Once we decide for a node, we can go  
to N-2 remaining nodes.

TSP - How many tours are there?
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

We start at D.
Because the graph is complete,  
we can go to any of the other N-1 nodes.

Once we decide for a node, we can go  
to N-2 remaining nodes.

Once we decide for a node, we can go  
to N-3 remaining nodes.

…

TSP - How many tours are there?
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

We start at D.
Because the graph is complete,  
we can go to any of the other N-1 nodes.

Once we decide for a node, we can go  
to N-2 remaining nodes.

Once we decide for a node, we can go  
to N-3 remaining nodes.

…

TSP - How many tours are there?
Given a complete, undirected graph G = (V,E), find the
shortest possible cycle that visits all vertices.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

There are

possibilities, but we can traverse  
complete tours in either direction.

D A C B = D B C A

There are complete tours.

TSP - Brute Force Approach

Try all possible tours and return the shortest one.

Obviously this algorithm runs in

TSP - Brute Force Approach

Try all possible tours and return the shortest one.

Obviously this algorithm runs in

Better algorithm:

Dynamic Programming algorithm byHeld-Karp (1962)

No polynomial time algorithm is known!

TSP - Greedy Approximation

How about a greedy approximation?

C

D

B

A

5
9

10

147

8
home post 

office

library

store

Start with node D, always  
follow the lowest edge until all  
vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

C

D

B

A

5
9

10

147

8
home post 

office

library

store

Start with node D, always  
follow the lowest edge until all  
vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

C

D

B

A

5
9

10

147

8
home post 

office

library

store

Start with node D, always  
follow the lowest edge until all  
vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

C

D

B

A

5
9

10

147

8
home post 

office

library

store

Start with node D, always  
follow the lowest edge until all  
vertices have been visited.

TSP - Greedy Approximation

How about a greedy approximation?

C

D

B

A

5
9

10

147

8
home post 

office

library

store

Start with node D, always  
follow the lowest edge until all  
vertices have been visited.

Unfortunately, this is not
guaranteed to find an
optimal solution.

cost = 36

TSP - Greedy Approximation

How about a greedy approximation?

C

D

B

A

5
9

10

147

8
home post 

office

library

store

Start with node D, always  
follow the lowest edge until all  
vertices have been visited.

Unfortunately, this is not
guaranteed to find an
optimal solution.

cost = 34

Combinatorial Optimization
• Many of the graph problems we discussed are

combinatorial optimization problems.

• Select the “best” structure from a set of output
structures subject to some constraints.

• Examples:

• Select the minimum spanning tree from the set of all
spanning trees.

• Select the lowest-cost traveling salesman tour from
the set of possible tours through a complete graph.

Bin Packing Problem
• You have:

• N items of sizes s1, …, sN

• Any number of bins of fixed size V.

• Goal: pack the items into bins such that the number of bins
needed is minimized. The sum of the item sizes in each bin
must not exceed V.

30

90
120

85

30

45

70

60

70 …

120 120 120

Bin Packing Problem
• You have:

• N items of sizes s1, …, sN

• Any number of bins of fixed size V.

• Goal: pack the items into bins such that the number of bins
needed is minimized. The sum of the item sizes in each bin
must not exceed V.

30

90
120

85

30

45
70

60

70

120 120 120 120 120 120

Knapsack Problem
I can only carry weight 10.  
What should I take to maximize value.

$400

$10

$300

$600$900
$200

$1,000

W=9 W=1
W=4

W=2

W=2W=1W=5

Knapsack Problem
• Given N items, each with a value vi and a weight wi. 

• Select a subset of the items to pack in a knapsack,
such that
• the total weight does not exceed some limit W
• the sum of values is maximized.

Decision Problems

• A decision problem has, for each input, exactly two
possible outcomes, YES or NO.  

• “Does this Graph contain an Euler Circuit”  
“Does this Graph contain a Hamiltonian Cycle”

From Combinatorial Optimization
to Decision Problems

• Any combinatorial optimization problem can be re-
phrased as a decision problem by asking if a
decision that is better than a certain threshold
exists.

• For instance, for TSP:  
“Is there a simple cycle that visits all vertices and
has total cost ≤ K”

• Observation:  
Solving the optimization problem is at least as hard as  
solving the decision problem.

Deterministic and  
Non-Deterministic Machines

• The “state” of a computation consists of all current
data (input, memory, CPU registers,…) and the last
program instruction.

• Given any state, a deterministic machine goes to a
unique next instruction.

S1 S2 S3
i1 i2 i3

…

Deterministic and  
Non-Deterministic Machines

• A non-deterministic machine could be in ANY
number of states at the same time.

• Equivalently, a non-deterministic machine contains
an “oracle” that tells it the optimal instruction (of
several multiple instructions) to execute in each
state.

S1 S2 S3
i1 i2 i3

S4
i4 i5

i6 S5

TSP with an Oracle
• State of the computation: Visited nodes, previous path.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

• Same algorithm as greedy algorithm,  
but now the oracle tells us which edge to follow next.

TSP with an Oracle
• State of the computation: Visited nodes, previous path.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

• Same algorithm as greedy algorithm,  
but now the oracle tells us which edge to follow next.

TSP with an Oracle
• State of the computation: Visited nodes, previous path.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

• Same algorithm as greedy algorithm,  
but now the oracle tells us which edge to follow next.

TSP with an Oracle
• State of the computation: Visited nodes, previous path.

C

D

B

A

5
9

10

147

8
home post 

office

library

store

• Same algorithm as greedy algorithm,  
but now the oracle tells us which edge to follow next.

This algorithm produces an optimal tour  
in linear time!

Unfortunately, a real oracle is not realistic.  
(But we can have a limited amount of parallelism).

The Class of NP Problems

• NP (Nondeterministic Polynomial Time) is the the
class of problems for which a polynomial running
time algorithm is known to exist on a non-
deterministic machine.

• How do we know that a problem is in NP.

• Are there problems that are not in NP?

How Do We Know If a
Problem Is in NP?

• Assume a decision problem produces YES on some input
and some proof/“certificate” for this result.

• A decision problem is in NP if we can verify, in deterministic
polynomial time, that the proof for a YES instance is correct.

• Examples:
• An algorithm determines that a graph contains a Hamiltonian cycle and  

provides such a cycle as proof.

• A spanning tree of cost < K is proof that such a spanning tree exists in  
a graph.

Undecidable Problems
• Are there problems that are impossible to solve?  

Turing 1936

• Halting Problem:

• Given a program description and some input,
determine if the program will terminate (halt) or run
forever (loop).

This problem is recursively undecidable.

The Halting Problem
• Assume we wrote a program called HALT(p,i)

• HALT outputs “YES” and halts if p halts on i.
• HALT outputs “NO” and halts if p loops on i.

HALT

p

i
p halts on i

p loops on i

output
“YES”

output “NO”

halt

halt

The Halting Problem

Write another program called LOOP(q)
• LOOP halts if HALT(q,q) returns “YES”
• LOOP loops if HALT(q,q) returns “NO”

HALT

p

i
p halts on i

p loops on i

output
“YES”

output “NO”

halt

halt

LOOPq
HALT(q,q) returns “NO” halt

HALT(q,q) returns “YES”

The Halting Problem

LOOPq
HALT(q,q) returns “NO” halt

HALT(q,q) returns “YES”

What happens if we run LOOP(LOOP)?

• Assume LOOP(LOOP) halts
• Then HALT(LOOP,LOOP) must have returned “NO”.

• Assume LOOP(LOOP) loops.
• Then HALT(LOOP,LOOP) must have returned “YES”.

A decidable problem that is
(probably) not in NP

• Consider the problem of deciding if a graph does
NOT have a hamiltonian cycle.

• No NP algorithm is known for this problem.

• Intuitively, a proof would require to list all possible
cycles. Verifying the proof means to show that none
of them is Hamiltonian, one by one.

NP Problems
Decidable Problems

NP Problems

Undecidable Problems

P and NP Problems
• The class P contains all problems that are solvable in

polynomial time on a deterministic machine (most of
the problems discussed in this course are in P).

• Clearly, all problems in P are also in NP.

• Surprisingly, it is unknown if there are problems in
NP (i.e. with proofs that can be verified in polynomial
time), that cannot be SOLVED in polynomial time.

vs.

P and NP Problems
Decidable Problems

P

NP Problems

if P ≠ NP

P and NP Problems
Decidable Problems

P = NP Problems

if P = NP

NP-Complete Problems
• An NP problem is NP-Complete if it is at least as

hard as any problem in NP.

• How de we know that a given problem p is NP
complete?

• Any instance of any problem q in NP can be
transformed into an instance of p in polynomial
time.

• This is also called a reduction of q to p.

Reductions

• Provide a mapping so that any instance of q can
be transformed into an instance of p.

• Solve p and then map the result back to q.

• These mappings must be computable in
polynomial time.

Problem Classes
Decidable Problems

P
NP Complete

NP Problems

if P ≠ NP

Importance of the  
NP-Complete Class

• Any other problem in NP can be transformed into
an NP-Complete problem.

• If a polynomial time solution exists for any of
these problems, there is a polynomial time
solution for all problems in NP!

• To show that a new problem is NP-Complete, we
show that another NP-complete problem can be
reduced to it.

P and NP Problems
Decidable Problems

P = NP = NP Complete

if P = NP

Example Reduction

• Assume we know the Hamiltonian Circuit problem
is NP-Complete.

• To show that TSP is NP-Complete, we can reduce
Hamiltonian Circuit to it.

Hamiltonian Circuit (known to be NP-Complete)

Traveling Salesman Problem

Reducing Hamiltonian
Circuit to TSP

• We want to know if the input graph G = (V,E)
contains a Hamiltonian Circuit.

• Construct a complete graph G’ over V.

• Set the cost of all edges in G’ that are also in E to
1.0. Set the cost of all other edges to 2.0.

Reducing Hamiltonian
Circuit to TSP

V1

V2 V3

V4 V5

Input graph G for  
Hamiltonian Circuit

V1

V2 V3

V4 V5

Input graph G’ for  
TSP

1 1

1

11

1

2
2

2
2

• Resulting TSP decision problem:
• Does G’ contain a TSP tour with cost ≤ |V|

• G contains a Hamiltonian Circuit if and only if G’ contains a
TSP tour with cost = |V|

