
Data Structures in Java
Lecture 20: Algorithm Design Techniques

12/2/2015

Daniel Bauer

1



Algorithms and Problem Solving

• Purpose of algorithms:  find solutions to problems. 

• Data Structures provide ways of organizing data 
such that problems can be solved more efficiently  
• Examples: Hashmaps provide constant time 

access by key, Heaps provide a cheap way to 
explore different possibilities in order…

• When confronted with a new problem, how do we:  
• Get an idea of how difficult it is?  
• Develop an algorithm to solve it?

2



Common Types of 
Algorithms

• Greedy Algorithms 

• Divide and Conquer 

• Dynamic Programming 

• We have already seen some examples for each. 
• We will look at the general techniques and some additional 

examples.
3



Greedy Algorithms
• Algorithm uses multiple “phases” or “steps”. In each 

phase a local decision is made that appears to be good.  

• Making a local decision is fast (often O(log N) time). 
Examples: Dijkstra’s, Prim’s, Kruskal’s 

• Greedy algorithms assume that making locally optimal 
decisions leads to a global optimum.

• This works for some problems. 

• For many others it doesn’t. Greedy algorithms are still 
useful to find approximate solutions.

“Take what you can get now”

4



ASCII Encoding
Character Decimal Binary

⋮

A 65 1000001
B 66 1000010
C 67 1000011
D 68 1000100
E 69 1000101
⋮

a 97 1100000
b 98 1100001
c 99 1100010
d 100 1100011
e 101 1100100
⋮

• The ASCII codec contains 128  
characters (about 100 printable  
characters + special chars). 

• Each character needs  
                         bits of space.

Can we store data more efficiently?5



A 5-Character Alphabet

Character Decimal Binary
a 0 “000"

e 1 “001"

i 2 “010"

s 3 “011"

t 4 “100"

space 5 “101"

newline 6 “110"

6



Character Decimal Binary Code Frequency Total bits
a 0 “000" 10 30

e 1 “001" 15 45

i 2 “010" 12 36

s 3 “011" 3 9

t 4 “100" 4 12

space 5 “101" 13 39

newline 6 “110" 1 3

Total: 175

A 5-Character Alphabet
Assume we see each character with a certain frequency  
in a textfile. We can then compute the total number of bits 
required to store the file.

7



Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “110"

a e i s t sp nl

0 1

0

0 0 0

0

0

11

1 1

depth of character i

frequency of i in the filefile size

8



Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “110"

a e i s t sp nl

0 1

0

0 0 0

0

0

11

1 1

depth of character i

frequency of i in the filefile size

Can we restructure the tree to minimize the file size?9



Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “110"

a e i s t sp nl

0 1

0

0 0 0

0

0

11

1 1

depth of character i

frequency of i in the filefile size

Prefix “11” is not used for any other character than nl.
10



Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “11"

a e i s

nl

t sp

0 1

0

0 0 0

0 11

1 1

depth of character i

frequency of i in the filefile size

Prefix “11” is not used for any other character than nl.
11



We cannot place characters on interior nodes, or else 
encoded sequences would be ambiguous. 

Prefix Trees

a

e i

s

t sp

0 1

0 0 11

nl
0

000110

12



We cannot place characters on interior nodes, or else 
encoded sequences would be ambiguous. 

Prefix Trees

a

e i

s

t sp

0 1

0 0 11

nl
0

000110
e  i   t

13



We cannot place characters on interior nodes, or else 
encoded sequences would be ambiguous. 

Prefix Trees

a

e i

s

t sp

0 1

0 0 11

nl
0

000110
nl   sp t

14



Huffman Code
chr bin fi

e “01" 15

sp “11" 13

i “10" 12

a “001” 10

t “0001” 4

s “00000” 3

nl “00001" 1

file size

i spe

a

t
nls

• All characters are at leaves.  
• Frequent characters have short codes.  
• Rare characters have long codes.

0 1

00
0

0

0

11
1

1
1

15



Huffman Code
chr bin fi

e “01" 15

sp “11" 13

i “10" 12

a “001” 10

t “0001” 4

s “00000” 3

nl “00001" 1

i spe

a

t
nls

Total size: 146 

•This example: Save 16% space compared to standard coding. 
•Typically much better compression (for larger files and alphabets).

0000001001000100001

16



Huffman Code
chr bin fi

e “01" 15

sp “11" 13

i “10" 12

a “001” 10

t “0001” 4

s “00000” 3

nl “00001" 1

i spe

a

t
nls

Total size: 146 

•This example: Save 16% space compared to standard coding. 
•Typically much better compression (for larger files and alphabets).

0000001001000100001

17



Huffman’s Algorithm

i spea t nls

• Maintain a forest of prefix trees.  
• Weight of a tree T = sum of frequencies of characters in T.

10 15 12 3 4 13 1

18



Huffman’s Algorithm

i spea t nls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

10 15 12 4 13

4
T1

19



Huffman’s Algorithm

i spea nls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

10 15 12 13

T1

t

T28

20



Huffman’s Algorithm

i spe anls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

18

15 12 13

T1

t

T2
T3

21



Huffman’s Algorithm

i spe anls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

18

15

24
T1

t

T2
T3

T4

22



Huffman’s Algorithm

i sp
e

anls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

33

24
T1

t

T2
T3

T4

T5

23



Huffman’s Algorithm

i spe
anls

• This is clearly a greedy algorithm as we consider then two 
lowest-weight trees at any level.  

• Keep the trees in the forest on a heap.

58

T1

t

T2
T3

T4

T5

T6

Selecting the two minimum 
weight trees: O(log N) each. 

 We do this N times. 
 

O(N log N)

24



Divide and Conquer 
Algorithms

• Algorithms consist of two parts:  

• Divide: Decompose the problem into smaller 
sub-problems. Solve each problem recursively 
(down to the base case). 

• Conquer: Solve the problem by combining 
solutions to the sub-problem. 

25



Divide and Conquer 
Example Algorithms

• Merge Sort. Quick Sort.  

• Binary Search.  

• Towers of Hanoi. 

• These algorithms work efficiently because: 

• The subproblems are independent.  
• Solving the subproblems first makes the overall problem 

easier.

26



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

27



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

28



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

29



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

30



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

2 8 34 64 1 21 32 51

31



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

2 8 34 64 1 21 32 51

1 2 8 21 32 34 51 64
32



Merge Sort Running Time

• Base case: N=1 (sort a 1-element list). T(1) = 1 

• Recurrence: T(N) = 2 T(N/2) + N

Recursively sort each half

Merge the two halfs

33



Running Time Analysis for Merge Sort 
and Quick Sort with Perfect Pivot.

assume 

34



Running time of Divide and Conquer 
Algorithms: “Master Theorem”

Most divide and conquer algorithms have the following 
running time equation:

The “Master Theorem” states that this recurrence relation  
has the following solution:

35



Master Theorem: MergeSort

Example: Merge Sort

This is Case 2: 

36



Dynamic Programming 
Algorithms

• In some cases, recursive algorithms (such as the ones 
used for Divide and Conquer algorithms) won’t work. 

• That’s because the solution to a subproblem is used 
more than once. 

• Merge Sort works because each partition is 
processed exactly once. 

• Dynamic Programming algorithms solve this problem by 
systematically recording the solution to sub-problems in 
a table and re-using them later.

37



public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
      throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
      return 1;
    } else {
      return fibonacci(k-1) + fibonacci(k-2);
    }
}

Base case: 1 step   T(1) = O(c), T(2) = O(c)

Recursive calls: T(k) = O(T(k-1) + T(k-2))

Broken Fibonacci

1,1,2,3,5,8,13,21,..

38



Analyzing the Recursive 
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2))

T(N)

T(N-1) T(N-2)

T(N-3)T(N-2) T(N-4)T(N-3)

…
T(1) T(2)T(1) T(2)

T(N-4)T(N-3)

…

…

T(3) T(3)
……

… …

each node is one recursive call

39



Dynamic Programming 
Fibonacci

T(k) = k

public int fibonacci(int k) throws IllegalArgumentException{

  if (k < 1) {
    throw new IllegalArgumentException("Expecting a positive integer.");
  }
  int b = 1; //k-2
  int a = 1; //k-1
  for (int i=3; i<=k; i++) {
    int new_fib = a + b;
    b = a;
    a = new_fib;
  }
  return a;
}

T(N) = O(N)

40



Longest Increasing 
Subsequence

• Given a sequence of numbers, find the longest 
increasing (not necessarily contiguous) 
subsequence.

5        2         8       6        3       6        9        7 

5   8    9 

41



Longest Increasing 
Subsequence

• Given a sequence of numbers, find the longest 
increasing (not necessarily contiguous) 
subsequence.

5        2         8       6        3       6        9        7 

2   3   6    7 

42



Longest Increasing 
Subsequence

• We can think of this problem as a graph problem.

5        2         8       6        3       6        9        7 

This is a DAG. Our goal is to find the longest path.43



Longest Increasing 
Subsequence: Recursive Solution

5        2         8       6        3       6        9        7 

Step 1: Reducing the problem to easier subproblems 
(recursive divide-and-conquer solution) 

LIS(i) {  
    return max( {LIS(j) for j=j..i-1 if a[j] < a[i]} ) + 1 
}

44



Longest Increasing 
Subsequence: Recursive Solution

LIS(i) {  
    return max( {LIS(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

LIS(7)

LIS(0) LIS(1) LIS(3) LIS(4) LIS(5)

LIS(6)

…

LIS(0) LIS(1) LIS(4)

LIS(1)

LIS(1)LIS(0) LIS(1)

45



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0

i

a[i]

L[i]

46



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1

i

a[i]

L[i]

47



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1

i

a[i]

L[i]

48



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1

i

a[i]

L[i]

49



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2

i

a[i]

L[i]

50



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2 3

i

a[i]

L[i]

51



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2 3 3

i

a[i]

L[i]

52



Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2 3 3

i

a[i]

L[i]

O(N2)

53



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance (Levenshtein Distance) 
between two strings s and t  is the minimal number 
of insertions, deletions, and substitutions 
needed to convert s into t.  

SATURDAY

SUNDAY 54



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance (Levenshtein Distance) 
between two strings s and t  is the minimal number 
of insertions, deletions, and substitutions 
needed to convert s into t.  

SATURDAY

STURDAY
delete A

SUNDAY 55



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance (Levenshtein Distance) 
between two strings s and t  is the minimal number 
of insertions, deletions, and substitutions 
needed to convert s into t.  

SATURDAY

STURDAY
delete A

SURDAY
delete T

SUNDAY 56



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance between two strings s 
and t  is the minimal number of insertions, 
deletions, and substitutions needed to convert s 
into t.  

SATURDAY

STURDAY
delete A

SURDAY
delete T

SUNDAY
Substitute R with N

Minimum Edit Distance = 3

57



Edit Distance as Search
• Initial state s, Goal state t. 
• Try each operation for each letter. 
• Try to find the shortest path.

SATURDAY
ins del subs

SSATURDAY ATURDAY SATURDAY

SUNDAY

• Search space is HUGE and contains many duplicate 
states.

58



Dynamic Programming 
Algorithm for Edit Distance

• Assume we have two strings 
s = s1,s2,…,sn     and    t = t1, t2, …, tm 

• Let D(i,j) be the minimum edit distance between  
s[0..i] and t[0..j]. 

• For example s = SATURDAY, t = SUNDAY  
D(2,3) = 2

SA SUNSU
subs A / U insert N

59



Dynamic Programming 
Algorithm for Edit Distance

• Let D(i,j) be the minimum edit distance between  
s[0..i] and t[0..j]. 

• Basic approach:   

• Fill a table by computing D(i,j)  
for all (0 < i < n) and (0 < j < m).  

• Do this “bottom-up”, starting with small i and j. 
Table entries for larger i and j are based on previous 
entries. 

60



Dynamic Programming 
Algorithm for Edit Distance
 
For i = 1..n 
For j = 1..m 

For i = 1..n { 
   For j = 1..m { 

   } 
} 
    61



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1

- 0 1 2 3 4 5 6

- S U N D A Y

initialization

Edit Distance Example

62



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

63



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

64



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

65



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

66



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2 3

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

67



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2 3 4

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

68



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

69



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

70



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

71



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

72



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2 3

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

73



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2 3 3

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

74



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

75



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

76



D(i,j)

Y 8

A 7

D 6

R 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

77



D(i,j)

Y 8

A 7

D 6

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

78



D(i,j)

Y 8

A 7

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

79



D(i,j)

Y 8

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

80



D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

81



D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

subs

82



D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

subs

83



D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

ins

subs

ins

84



D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

ins

subs

ins

SUNDAY

SAUNDAY

SATUNDAY

SATURDAY

+A

+ T

N/R

85


