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Algorithms and Problem Solving

• Purpose of algorithms:  find solutions to problems. 

• Data Structures provide ways of organizing data 
such that problems can be solved more efficiently  
• Examples: Hashmaps provide constant time 

access by key, Heaps provide a cheap way to 
explore different possibilities in order…

• When confronted with a new problem, how do we:  
• Get an idea of how difficult it is?  
• Develop an algorithm to solve it?
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Common Types of 
Algorithms

• Greedy Algorithms 

• Divide and Conquer 

• Dynamic Programming 

• We have already seen some examples for each. 
• We will look at the general techniques and some additional 

examples.
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Greedy Algorithms
• Algorithm uses multiple “phases” or “steps”. In each 

phase a local decision is made that appears to be good.  

• Making a local decision is fast (often O(log N) time). 
Examples: Dijkstra’s, Prim’s, Kruskal’s 

• Greedy algorithms assume that making locally optimal 
decisions leads to a global optimum.

• This works for some problems. 

• For many others it doesn’t. Greedy algorithms are still 
useful to find approximate solutions.

“Take what you can get now”
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ASCII Encoding
Character Decimal Binary

⋮

A 65 1000001
B 66 1000010
C 67 1000011
D 68 1000100
E 69 1000101
⋮

a 97 1100000
b 98 1100001
c 99 1100010
d 100 1100011
e 101 1100100
⋮

• The ASCII codec contains 128  
characters (about 100 printable  
characters + special chars). 

• Each character needs  
                         bits of space.

Can we store data more efficiently?5



A 5-Character Alphabet

Character Decimal Binary
a 0 “000"

e 1 “001"

i 2 “010"

s 3 “011"

t 4 “100"

space 5 “101"

newline 6 “110"
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Character Decimal Binary Code Frequency Total bits
a 0 “000" 10 30

e 1 “001" 15 45

i 2 “010" 12 36

s 3 “011" 3 9

t 4 “100" 4 12

space 5 “101" 13 39

newline 6 “110" 1 3

Total: 175

A 5-Character Alphabet
Assume we see each character with a certain frequency  
in a textfile. We can then compute the total number of bits 
required to store the file.
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Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “110"

a e i s t sp nl

0 1

0

0 0 0

0

0

11

1 1

depth of character i

frequency of i in the filefile size
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Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “110"

a e i s t sp nl

0 1

0

0 0 0

0

0

11

1 1

depth of character i

frequency of i in the filefile size

Can we restructure the tree to minimize the file size?9



Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “110"

a e i s t sp nl

0 1

0

0 0 0

0

0

11

1 1

depth of character i

frequency of i in the filefile size

Prefix “11” is not used for any other character than nl.
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Prefix Trees
Character Binary

a “000"

e “001"

i “010"

s “011"

t “100"

space “101"

newline “11"

a e i s

nl

t sp

0 1

0

0 0 0

0 11

1 1

depth of character i

frequency of i in the filefile size

Prefix “11” is not used for any other character than nl.
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We cannot place characters on interior nodes, or else 
encoded sequences would be ambiguous. 

Prefix Trees

a

e i

s

t sp

0 1

0 0 11

nl
0

000110
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We cannot place characters on interior nodes, or else 
encoded sequences would be ambiguous. 

Prefix Trees

a

e i

s

t sp

0 1

0 0 11

nl
0

000110
e  i   t
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We cannot place characters on interior nodes, or else 
encoded sequences would be ambiguous. 

Prefix Trees

a

e i

s

t sp

0 1

0 0 11

nl
0

000110
nl   sp t
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Huffman Code
chr bin fi

e “01" 15

sp “11" 13

i “10" 12

a “001” 10

t “0001” 4

s “00000” 3

nl “00001" 1

file size

i spe

a

t
nls

• All characters are at leaves.  
• Frequent characters have short codes.  
• Rare characters have long codes.

0 1

00
0

0

0

11
1

1
1
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Huffman Code
chr bin fi

e “01" 15

sp “11" 13

i “10" 12

a “001” 10

t “0001” 4

s “00000” 3

nl “00001" 1

i spe

a

t
nls

Total size: 146 

•This example: Save 16% space compared to standard coding. 
•Typically much better compression (for larger files and alphabets).

0000001001000100001
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Huffman Code
chr bin fi

e “01" 15

sp “11" 13

i “10" 12

a “001” 10

t “0001” 4

s “00000” 3

nl “00001" 1

i spe

a

t
nls

Total size: 146 

•This example: Save 16% space compared to standard coding. 
•Typically much better compression (for larger files and alphabets).

0000001001000100001
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Huffman’s Algorithm

i spea t nls

• Maintain a forest of prefix trees.  
• Weight of a tree T = sum of frequencies of characters in T.

10 15 12 3 4 13 1
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Huffman’s Algorithm

i spea t nls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

10 15 12 4 13

4
T1
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Huffman’s Algorithm

i spea nls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

10 15 12 13

T1

t

T28
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Huffman’s Algorithm

i spe anls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

18

15 12 13

T1

t

T2
T3
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Huffman’s Algorithm

i spe anls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

18

15

24
T1

t

T2
T3

T4
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Huffman’s Algorithm

i sp
e

anls

• In every phase:  
• Choose the two trees with smallest weight and merge  

them.

33

24
T1

t

T2
T3

T4

T5
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Huffman’s Algorithm

i spe
anls

• This is clearly a greedy algorithm as we consider then two 
lowest-weight trees at any level.  

• Keep the trees in the forest on a heap.

58

T1

t

T2
T3

T4

T5

T6

Selecting the two minimum 
weight trees: O(log N) each. 

 We do this N times. 
 

O(N log N)
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Divide and Conquer 
Algorithms

• Algorithms consist of two parts:  

• Divide: Decompose the problem into smaller 
sub-problems. Solve each problem recursively 
(down to the base case). 

• Conquer: Solve the problem by combining 
solutions to the sub-problem. 
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Divide and Conquer 
Example Algorithms

• Merge Sort. Quick Sort.  

• Binary Search.  

• Towers of Hanoi. 

• These algorithms work efficiently because: 

• The subproblems are independent.  
• Solving the subproblems first makes the overall problem 

easier.
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Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2
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Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2
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Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

29



Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21
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Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

2 8 34 64 1 21 32 51
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Merge Sort
• Split the array in half, recursively sort each half.  

• Merge the two sorted lists. 

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

2 8 34 64 1 21 32 51

1 2 8 21 32 34 51 64
32



Merge Sort Running Time

• Base case: N=1 (sort a 1-element list). T(1) = 1 

• Recurrence: T(N) = 2 T(N/2) + N

Recursively sort each half

Merge the two halfs
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Running Time Analysis for Merge Sort 
and Quick Sort with Perfect Pivot.

assume 
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Running time of Divide and Conquer 
Algorithms: “Master Theorem”

Most divide and conquer algorithms have the following 
running time equation:

The “Master Theorem” states that this recurrence relation  
has the following solution:
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Master Theorem: MergeSort

Example: Merge Sort

This is Case 2: 
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Dynamic Programming 
Algorithms

• In some cases, recursive algorithms (such as the ones 
used for Divide and Conquer algorithms) won’t work. 

• That’s because the solution to a subproblem is used 
more than once. 

• Merge Sort works because each partition is 
processed exactly once. 

• Dynamic Programming algorithms solve this problem by 
systematically recording the solution to sub-problems in 
a table and re-using them later.
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public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
      throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
      return 1;
    } else {
      return fibonacci(k-1) + fibonacci(k-2);
    }
}

Base case: 1 step   T(1) = O(c), T(2) = O(c)

Recursive calls: T(k) = O(T(k-1) + T(k-2))

Broken Fibonacci

1,1,2,3,5,8,13,21,..
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Analyzing the Recursive 
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2))

T(N)

T(N-1) T(N-2)

T(N-3)T(N-2) T(N-4)T(N-3)

…
T(1) T(2)T(1) T(2)

T(N-4)T(N-3)

…

…

T(3) T(3)
……

… …

each node is one recursive call
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Dynamic Programming 
Fibonacci

T(k) = k

public int fibonacci(int k) throws IllegalArgumentException{

  if (k < 1) {
    throw new IllegalArgumentException("Expecting a positive integer.");
  }
  int b = 1; //k-2
  int a = 1; //k-1
  for (int i=3; i<=k; i++) {
    int new_fib = a + b;
    b = a;
    a = new_fib;
  }
  return a;
}

T(N) = O(N)
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Longest Increasing 
Subsequence

• Given a sequence of numbers, find the longest 
increasing (not necessarily contiguous) 
subsequence.

5        2         8       6        3       6        9        7 

5   8    9 
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Longest Increasing 
Subsequence

• Given a sequence of numbers, find the longest 
increasing (not necessarily contiguous) 
subsequence.

5        2         8       6        3       6        9        7 

2   3   6    7 
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Longest Increasing 
Subsequence

• We can think of this problem as a graph problem.

5        2         8       6        3       6        9        7 

This is a DAG. Our goal is to find the longest path.43



Longest Increasing 
Subsequence: Recursive Solution

5        2         8       6        3       6        9        7 

Step 1: Reducing the problem to easier subproblems 
(recursive divide-and-conquer solution) 

LIS(i) {  
    return max( {LIS(j) for j=j..i-1 if a[j] < a[i]} ) + 1 
}
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Longest Increasing 
Subsequence: Recursive Solution

LIS(i) {  
    return max( {LIS(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

LIS(7)

LIS(0) LIS(1) LIS(3) LIS(4) LIS(5)

LIS(6)

…

LIS(0) LIS(1) LIS(4)

LIS(1)

LIS(1)LIS(0) LIS(1)
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2 3

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2 3 3

i

a[i]

L[i]
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Longest Increasing Subsequence: 
Dynamic Programming

L = new Integer[n]; 
for i = 1…n { 
    L[j] = max( {L(j) for j=0..i-1 if a[j] < a[i]} ) + 1 
}

0 1 2 3 4 5 6 7

5 2 8 6 3 6 9 7

0 0 1 1 1 2 3 3

i

a[i]

L[i]

O(N2)
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Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance (Levenshtein Distance) 
between two strings s and t  is the minimal number 
of insertions, deletions, and substitutions 
needed to convert s into t.  

SATURDAY

SUNDAY 54



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance (Levenshtein Distance) 
between two strings s and t  is the minimal number 
of insertions, deletions, and substitutions 
needed to convert s into t.  

SATURDAY

STURDAY
delete A

SUNDAY 55



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance (Levenshtein Distance) 
between two strings s and t  is the minimal number 
of insertions, deletions, and substitutions 
needed to convert s into t.  

SATURDAY

STURDAY
delete A

SURDAY
delete T

SUNDAY 56



Dynamic Programming Example: 
Minimum Edit Distance

• The Minimum Edit Distance between two strings s 
and t  is the minimal number of insertions, 
deletions, and substitutions needed to convert s 
into t.  

SATURDAY

STURDAY
delete A

SURDAY
delete T

SUNDAY
Substitute R with N

Minimum Edit Distance = 3
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Edit Distance as Search
• Initial state s, Goal state t. 
• Try each operation for each letter. 
• Try to find the shortest path.

SATURDAY
ins del subs

SSATURDAY ATURDAY SATURDAY

SUNDAY

• Search space is HUGE and contains many duplicate 
states.
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Dynamic Programming 
Algorithm for Edit Distance

• Assume we have two strings 
s = s1,s2,…,sn     and    t = t1, t2, …, tm 

• Let D(i,j) be the minimum edit distance between  
s[0..i] and t[0..j]. 

• For example s = SATURDAY, t = SUNDAY  
D(2,3) = 2

SA SUNSU
subs A / U insert N
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Dynamic Programming 
Algorithm for Edit Distance

• Let D(i,j) be the minimum edit distance between  
s[0..i] and t[0..j]. 

• Basic approach:   

• Fill a table by computing D(i,j)  
for all (0 < i < n) and (0 < j < m).  

• Do this “bottom-up”, starting with small i and j. 
Table entries for larger i and j are based on previous 
entries. 
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Dynamic Programming 
Algorithm for Edit Distance
 
For i = 1..n 
For j = 1..m 

For i = 1..n { 
   For j = 1..m { 

   } 
} 
    61



D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1

- 0 1 2 3 4 5 6

- S U N D A Y

initialization

Edit Distance Example
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2 3

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2 3 4

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2 3

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2 3 3

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion
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D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

subs
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D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

subs
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D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

ins

subs

ins
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D(i,j)

Y 8 7 6 6 5 4 3

A 7 6 5 5 4 3 4

D 6 5 4 4 3 4 5

R 5 4 3 3 4 4 5

U 4 3 2 3 3 4 5

T 3 2 2 2 3 4 4

A 2 1 1 2 3 3 4

S 1 0 1 2 3 4 5

- 0 1 2 3 4 5 6

- S U N D A Y

insertion
subst 

or equal

deletion

ins

subs

ins

SUNDAY

SAUNDAY

SATUNDAY

SATURDAY

+A

+ T

N/R
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