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Draw tnis Figure

Without lifting your pen off the paper.




Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.
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This graph does not have an Euler Path.
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Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.
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* An Euler Circuit is an Euler path that begins and
ends at the same node.
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This graph does not have an Euler Path.
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Necessary Condition for
Euler Circults

e Observation:

* Once we enter v, we need another edge to leave it.

* |f v has an odd number of edges, the last time we enter v,
we will be stuck!
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Necessary Condition for
Euler Circults

* Observation:
* Once we enter v, we need another edge to leave it.

* |f v has an odd number of edges, the last time we enter v,
we will be stuck!

* For an Euler Circuit to exist in a graph, all vertices
need to have even degree (even number of edges).




Necessary Condition for
Euler Paths

* For an Euler Path to exist in a graph, exactly O or 2
vertices must have odd degree.

e Start with one of the odd vertices.

e End In the other one.

)
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Necessary Condition for
Euler Paths

* For an Euler Path to exist in a graph, exactly O or 2
vertices must have odd degree.

e Start with one of the odd vertices.

e End In the other one.
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Conditions for Euler Paths
and Circuits

* For an Euler Circuit to exist in a graph, all vertices
need to have even degree (even number of edges).

 For an Euler Path to exist in a graph, exactly O or 2
vertices need to have odd degree.

* [hese conditions are also sufticient!
(i.e. every graph that contains only vertices of even

degree has an Euler circuit). (Hierholzer, 1873 )
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Seven Bridges of Konigsberg

Leonhard Euler, 1735

The city of Kénigsberg in Prussia (now Kaliningrad, Russia)
was set on both sides of the Pregel River, and included two
large islands which were connected to each other and the

mainland by seven bridges. ~"""WM = =ty ﬁ&& T
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Seven Bridges of Kdnigsberg

Leonhard Euler, 1735
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Seven Bridges of Konigsberg

Leonhard Euler, 1735
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There is no Euler Path in this graph.
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Finding Euler Circuits

e Start with any vertex s. First, using DFS find any circuit starting
and ending in s. Mark all edges on the circuit as visited.

 Because all vertices have even degree, we are guaranteed
to not get stuck before we arrive at s again.

* While there are still edges in the graph that are not market
visited:

 FIind the first vertex v on the circuit that has unvisited
edges.

* Find a circuit starting in v and splice this path into the first
circult
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Finding Euler Circuits
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Finding Euler Circuits
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Hamiltonian Cycle

* A Hamiltonian Path is a path through an undirected
graph that visits every vertex exactly once (except
that the first and last vertex may be the same).

* A Hamiltonian Cycle is a Hamiltonian Path that
starts and ends in the same node.

O ()

O

g
<%No hamiltonian path. \>



Hamiltonian Cycle

 We can check if a graph contains an Euler Cycle in
inear time.

o Surprisingly, checking if a graph contains a
Hamiltonian Path/Cycle is much harder!

* No polynomial time solution (i.e. O(NX) ) is known.
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Connectivity

* An undirected graph is connected if there is a
path from every vertex to every other vertex.

* Jest for connectivity: See if DFS can reach all vertices.

unconnected, grapn



Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.
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Blconnectivity
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Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.

C and D are articulation points.
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Testing for Biconnectivity

* A graph G is biconnected if:
* (5 is connected.

* (G does not contain any articulation points.

* Nalve approach:

* Remove each vertex. Test it the resulting graph is still
connected.

V|-O(V]+[E[) = O(|V[? + |V[[E|)
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Depth First Spanning Tree

* The steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
 Add a back edge for every skipped edge.
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Depth First Spanning Tree

* The steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
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Depth First Spanning Tree

* The steps taken by DFS can be illustrated as a (directed)
spanning tree.

. Add a tree edge for every graph edge taken by DFS.
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Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
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|[dentifying Articulation Points (1)

* |f the root of the DFS spanning tree has two outgoing
tree edges, the root Is an articulation point.

’ Cis an
é articulation
point.




|[dentifying Articulation Points (1)

* |f the root of the DFS spanning tree has two outgoing
tree edges, the root Is an articulation point.

* Depends on which vertex we start DFS from. 4

A IS not an
articulation
point.



|[dentitying Articulation Points (2)

* Any non-root vertex vis an articulation point ift

 vhas achild wsuch that there is no
back-edge from the subtree below w
to any ancestor of v.
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Preorder Numbers

e Assign numbers to each vertex in the order in which they
are visited by DFS.

e For every tree edge (u,v): Num(u) < Num(v)

* For every back edge (u,v): Num(u) > Num(v)

Num(v)
1

G MmO O 0> <
~N OO OO~ W N




L ow numbers

* For each vertex, find the lowest numbered vertex that is
reachable by following a path that contains
at most one back edge.

Num(v) Low(v)
1 1
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|[dentitying Articulation
PoINts

* Any non-root vertex vis an articulation point ift
* v has a child w such that Low(w) > Num(v)
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Computing Low Numbers
Recursively
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Computing Low Numbers

for all tree edges (v,u) {
compute_low(u);
it ( Low(u) < Low(Vv))
Low(v) = Low(u)
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Connectivity in Directed
Graphs

* A directed graph is weakly connected if there is
an undirected path from every vertex to every other
vertex.

weakly conngcted graph



Strongly Connected Graphs

* A directed graph is strongly connected if there is
a path from every vertex to every other vertex.

Weakly connected, but not strongly
connected (no other vertex can be
reached from v).
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Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.
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Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

N

* Reverse direction of edges and run DFS again.
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Testing it a Graph is Strongly
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* Reverse direction of edges and run DFS again.

105



Strongly Connected
Components

e (Goal: Partition the graph into subgraphs such that
each partition is strongly connected.

|
2
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Strongly Connected
Components

e (Goal: Partition the graph into subgraphs such that

each partition is strongly connected.
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Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

g

o
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Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.
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Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.
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Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitraéy
unvisited node.

Des
o o

o

m O >0 Wm <« —T

119



Finding Strongly Connected
Components

* Reverse the edge directions.

IS
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Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

e (Continue until stack is empty.

nodes are a strong component. Remove this component from the
graph and stack.
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Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

e (Continue until stack is empty.

nodes are a strong component. Remove this component from the
graph and stack.
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Finding Strongly Connected
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Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.
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Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.
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Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.

> &
o e e

Y e—d

@

m O > O

126



Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.
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Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.
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