
Data Structures in Java
Lecture 19: Applications of DFS

11/30/2015

Daniel Bauer

1



Contents

• Applications of DFS 

• Euler Circuits 

• Biconnectivity in Undirected Graphs. 

• Finding Strongly Connected Components for 
Directed Graphs.

2



Contents

• Applications of DFS 

• Euler Circuits

• Biconnectivity in Undirected Graphs. 

• Finding Strongly Connected Components for 
Directed Graphs.

3



Draw this Figure
Without lifting your pen off the paper. 

4



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

5



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

6



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

7



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

8



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

9



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

10



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

11



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

12



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

13



Euler Paths
• An Euler Path is a path through an undirected 

graph that visits every edge exactly once.

This graph does not have an Euler Path.

14



Euler Circuit

This graph does NOT have an Euler Circuit

• An Euler Circuit is an Euler path that begins and 
ends at the same node.

15



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

16



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

17



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

18



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

19



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

20



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

21



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

22



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

23



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

24



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

25



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

26



Euler Circuit
• An Euler Circuit is an Euler path that begins and 

ends at the same node.

This graph does not have an Euler Path.

27



Necessary Condition for 
Euler Circuits

• Observation:  
• Once we enter v, we need another edge to leave it.  
• If v has an odd number of edges, the last time we enter v,  

we will be stuck!

3

28



Necessary Condition for 
Euler Circuits

• Observation:  
• Once we enter v, we need another edge to leave it.  
• If v has an odd number of edges, the last time we enter v,  

we will be stuck!

2

29



Necessary Condition for 
Euler Circuits

• Observation:  
• Once we enter v, we need another edge to leave it.  
• If v has an odd number of edges, the last time we enter v,  

we will be stuck!

1

30



Necessary Condition for 
Euler Circuits

• Observation:  
• Once we enter v, we need another edge to leave it.  
• If v has an odd number of edges, the last time we enter v,  

we will be stuck!

0

• For an Euler Circuit to exist in a graph, all vertices  
need to have even degree (even number of edges).

31



Necessary Condition for 
Euler Paths

3

• For an Euler Path to exist in a graph, exactly 0 or 2 
vertices must have odd degree.

• Start with one of the odd vertices. 
• End in the other one. 

3
32



Necessary Condition for 
Euler Paths

3

• For an Euler Path to exist in a graph, exactly 0 or 2 
vertices must have odd degree.

• Start with one of the odd vertices. 
• End in the other one. 

3
33



Conditions for Euler Paths 
and Circuits

• For an Euler Circuit to exist in a graph, all vertices  
need to have even degree (even number of edges).

• For an Euler Path to exist in a graph, exactly 0 or 2 
vertices need to have odd degree. 

• These conditions are also sufficient!  
(i.e. every graph that contains only vertices of even 
degree has an Euler circuit). (Hierholzer, 1873 )

34



Seven Bridges of Königsberg
Leonhard Euler, 1735

Source: Wikipedia

The city of Königsberg in Prussia (now Kaliningrad, Russia) 
was set on both sides of the Pregel River, and included two 
large islands which were connected to each other and the 
mainland by seven bridges.

Euler’s Problem: 
Find a walk through the city  
that crosses every bridge  
exactly once!

35



Seven Bridges of Königsberg
Leonhard Euler, 1735

36



Seven Bridges of Königsberg
Leonhard Euler, 1735

3

5

3

3

There is no Euler Path in this graph.

37



Finding Euler Circuits
• Start with any vertex s. First, using DFS find any circuit starting 

and ending in s. Mark all edges on the circuit as visited. 

• Because all vertices have even degree, we are guaranteed 
to not get stuck before we arrive at s again.  

• While there are still edges in the graph that are not market 
visited: 

• Find the first vertex v on the circuit that has unvisited 
edges.  

• Find a circuit starting in v and splice this path into the first 
circuit

38



Finding Euler Circuits

8

5

6

9 10

7

2

4

1 3
42 2

22 4

4

4

4

4

39



Finding Euler Circuits

8

5

6

9 10

7

2

4

1 3
31 2

22 4

4

4

4

4

40



Finding Euler Circuits

8

5

6

9 10

7

2

4

1 3
21 2

22 4

4

3

4

4

41



Finding Euler Circuits

8

5

6

9 10

7

2

4

1 3
21 2

22 4

4

2

3

4

42



Finding Euler Circuits

8

5

6

9 10

7

2

4

1 3
21 2

22 4

4

2

2

3

43



Finding Euler Circuits

8

5

6

9 10

7

2

4

1 3
20 2

22 4

4

2

2

2

1 2 4 6 5 1
44



1

Finding Euler Circuits

8

5

6

9 10

7

2

4

3
20 2

22 4

4

2

2

2

1 2 4 6 5 1
45



1

Finding Euler Circuits

8

5

6

9 10

7

2

4

3
00 0

22 2

2

2

0

2

1 2 4 6 5 1

2 7 6 10 3 2

46



1

Finding Euler Circuits

8

5

6

9 10

7

2

4

3
00 0

22 2

2

2

0

2

2 7 6 10 3 2

1 4 6 5 1
47



1

Finding Euler Circuits

8

5

6

9 10

7

4

3
0 0

00 0

0

0

0

0

1 2 7 6 10 3 2 4 6 5 1

2
0

7 4 5 8 9 10 7 

48



1

Finding Euler Circuits

8

5

6

9 10

7

4

3
0 0

00 0

0

0

0

0

2
0

7 4 5 8 9 10 7 

1 2 6 10 3 2 4 6 5 1 
49



Hamiltonian Cycle
• A Hamiltonian Path is a path through an undirected 

graph that visits every vertex exactly once (except 
that the first and last vertex may be the same). 

• A Hamiltonian Cycle is a Hamiltonian Path that 
starts and ends in the same node.

No hamiltonian path.50



Hamiltonian Cycle
• We can check if a graph contains an Euler Cycle in 

linear time.  
• Surprisingly, checking if a graph contains a 

Hamiltonian Path/Cycle is much harder!  
• No polynomial time solution (i.e. O(Nk) ) is known.

No hamiltonian path.51



Contents

• Applications of DFS 

• Euler Circuits 

• Biconnectivity in Undirected Graphs.

• Finding Strongly Connected Components for 
Directed Graphs.

52



• An undirected graph is connected if there is a  
path from every vertex to every other vertex. 

Connectivity

unconnected graph

• Test for connectivity: See if DFS can reach all vertices.

53



Biconnectivity
• A graph is biconnected if there is no single vertex 

v, such that removing v will disconnect the 
remaining graph.

A

B

C

D E

AB

C D
F

EGbiconnected
not biconnected54



Biconnectivity
• A graph is biconnected if there is no single vertex 

v, such that removing v will disconnect the 
remaining graph.

A

B

C

D E

AB

F

EGbiconnected
not biconnected

D

55



Biconnectivity
• A graph is biconnected if there is no single vertex 

v, such that removing v will disconnect the 
remaining graph.

A

B

C

D E

AB

C D
F

EGbiconnected
not biconnected56



Biconnectivity
• A graph is biconnected if there is no single vertex 

v, such that removing v will disconnect the 
remaining graph.

A

B

C

D E

AB

F

EGbiconnected
not biconnected

C

57



Biconnectivity
• A graph is biconnected if there is no single vertex 

v, such that removing v will disconnect the 
remaining graph.

A

B

C

D E

AB

C D
F

EGbiconnected
not biconnected

C and D are articulation points.

58



Testing for Biconnectivity
• A graph G is biconnected if: 

• G is connected. 

• G does not contain any articulation points.

|V|·O(|V|+|E|) = O(|V|2 + |V|·|E|)

• Naive approach:  
• Remove each vertex. Test if the resulting graph is still 

connected. 

59



Depth First Spanning Tree

A

B

C

D E

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  
• Add a back edge  for every skipped edge.

60



Depth First Spanning Tree

A

B

C

D E

A

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

61



Depth First Spanning Tree

A

B

C

D E

A

B

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

62



Depth First Spanning Tree

A

B

C

D E

A

B

C

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

63



Depth First Spanning Tree

A

B

C

D E

A

B

C

D

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

64



Depth First Spanning Tree

A

B

C

D E

A

B

C

D

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  
• Add a back edge  for every skipped edge.

65



Depth First Spanning Tree

A

B

C

D E

A

B

C

D

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

• Add a back edge  for every skipped edge.

66



Depth First Spanning Tree

A

B

C

D E

A

B

C

D E

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

• Add a back edge  for every skipped edge.

67



Depth First Spanning Tree

A

B

C

D E

A

B

C

D E

• The steps taken by DFS can be illustrated as a (directed) 
spanning tree. 
• Add a tree edge for every graph edge taken by DFS.  

• Add a back edge  for every skipped edge.

68



Identifying Articulation Points (1)

A

B

C

D

E

• If the root of the DFS spanning tree has two outgoing  
tree edges, the root is an articulation point.

AB

C D
F

EG

F

G

C is an 
articulation 
point. 

69



Identifying Articulation Points (1)

A

B

D

E

• If the root of the DFS spanning tree has two outgoing  
tree edges, the root is an articulation point.

AB

C D
F

EG

F

C

G

• Depends on which vertex we start DFS from.

A is not an 
articulation 
point. 

70



Identifying Articulation Points (2)

A

B

D

E

• Any non-root vertex v is an articulation point iff 
• v has a child w such that  there is no  

back-edge from the subtree below w  
to any ancestor of v.

AB

C D
F

EG

F

C

G

C is an 
articulation 
point because 
of G.71



Identifying Articulation Points (2)

A

B

D

E

• Any non-root vertex v is an articulation point iff 
• v has a child w such that  there is no  

back-edge from the subtree below w  
to any ancestor of v.

AB

C D
F

EG

F

C

G
D is an 
articulation 
point because 
of E.72



Preorder Numbers
• Assign numbers to each vertex in the order in which they  

are visited by DFS. 
• For every tree edge (u,v):   Num(u) < Num(v) 
• For every back edge (u,v): Num(u) > Num(v)

v Num(v)
A 1
B 2
C 3
D 4
E 5
F 6
G 7

A

B

D

E

F

C

G

1

2

3

4

5

6

7

73



Low numbers
• For each vertex, find the lowest numbered vertex that is  

reachable by following a path that contains  
at most one back edge. 

v Num(v) Low(v)
A 1 1
B 2
C 3
D 4
E 5
F 6
G 7

A

B

D

E

F

C

G

1

2

3

4

5

6

7

74



Low numbers
• For each vertex, find the lowest numbered vertex that is  

reachable by following a path that contains  
at most one back edge. 

v Num(v) Low(v)
A 1 1
B 2
C 3
D 4
E 5
F 6
G 7

A

B

D

E

F

C

G
1
1
1

1

2

3

4

5

6

7

75



Low numbers
• For each vertex, find the lowest numbered vertex that is  

reachable by following a path that contains  
at most one back edge. 

v Num(v) Low(v)
A 1 1
B 2
C 3
D 4
E 5
F 6
G 7

A

B

D

E

F

C

G
1
1
1
4
4
7

1

2

3

4

5

6

7

76



Identifying Articulation 
Points

v Num(v) Low(v)
A 1 1
B 2
C 3
D 4
E 5
F 6
G 7

A

B

D

E

F

C

G
1
1
1
4
4
7

1

2

3

4

5

6

7

• Any non-root vertex v is an articulation point iff 
• v has a child w such that  there is no  

back-edge from the subtree below w  
to any ancestor of v.

77



Identifying Articulation 
Points

v Num(v) Low(v)
A 1 1
B 2
C 3
D 4
E 5
F 6
G 7

A

B

D

E

F

C

G

1
1
1
4
4
7

1

2

3

4

5

6

7

• Any non-root vertex v is an articulation point iff 
• v has a child w such that  Low(w) ≥ Num(v)

78



Computing Low Numbers 
Recursively

A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}
79



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

Computing Low Numbers 
Recursively

80



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

Computing Low Numbers 
Recursively

81



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

3

Computing Low Numbers 
Recursively

82



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

3

1

7

Computing Low Numbers 
Recursively

83



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

3

1

5

7

Computing Low Numbers 
Recursively

84



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

3

1

5

4

7

Computing Low Numbers 
Recursively

85



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

3

1

4

4

7

Computing Low Numbers 
Recursively

86



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

3

1

4

4

7

Computing Low Numbers 
Recursively

87



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

2

1

1

4

4

7

Computing Low Numbers 
Recursively

88



A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

1

1

1

4

4

7

Computing Low Numbers 
Recursively

89



Computing Low Numbers

A

B

D

E

F

C

G

1

2

3

4

5

6

7

Low(v) =  Num(v) 
for all back edges (v,u) { 

if ( Num(u) < Low(v) ) 
Low(v) = Num(u); 

} 
for all tree edges (v,u) { 
  compute_low(u);
  if ( Low(u) < Low(v) ) 
      Low(v) = Low(u); 

}

compute_low(v)  {

}

1

1

1

1

4

4

7

Time to compute low numbers: O(|V|+|E|)

Time to compute preorder numbers: O(|V| +|E|)

Time to check for articulation points: O(|V|+|E|)

Total: O(|V|+|E|)

90



Contents

• Applications of DFS 

• Euler Circuits 

• Biconnectivity in Undirected Graphs. 

• Finding Strongly Connected Components for 
Directed Graphs.

91



• A directed graph is weakly connected if there is 
an undirected path from every vertex to every other 
vertex. 

Connectivity in Directed 
Graphs

weakly connected graph 92



• A directed graph is strongly connected if there is 
a path from every vertex to every other vertex. 

Strongly Connected Graphs 

v

Weakly connected, but not strongly 
connected (no other vertex can be 

reached from v).
93



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
94



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
95



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
96



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
97



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
98



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
99



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
100



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
101



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
102



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
103



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
104



• Run DFS to see if all vertices are reachable from 
some start node s. 

Testing if a Graph is Strongly 
Connected 

s

• Reverse direction of edges and run DFS again.
105



• Goal: Partition the graph into subgraphs such that 
each partition is strongly connected.

Strongly Connected 
Components 

106



• Goal: Partition the graph into subgraphs such that 
each partition is strongly connected.

Strongly Connected 
Components 

A

D

E

B

C F

G

H

J I

107



• Goal: Partition the graph into subgraphs such that 
each partition is strongly connected.

Strongly Connected 
Components 

A

D

E

B

C F

G

H

J I

108



• Goal: Partition the graph into subgraphs such that 
each partition is strongly connected.

Strongly Connected 
Components 

A

D

E

B

C F

G

H

J I

109



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE

110



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E

111



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E
D

112



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E
D
A

113



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E
D
A
C

114



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E
D
A
C
B
F

115



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E
D
A
C
B
F

116



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE
E
D
A
C
B
F
J
I

117



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE

E
D
A
C
B
F
J
I
H

118



• Run DFS and push all fully expanded nodes on a 
stack. If we get stuck, restart search at an arbitrary 
unvisited node. 

Finding Strongly Connected 
Components

A

D

B

C F

G

H

J IE

E
D
A
C
B
F
J
I
H
G

119



• Reverse the edge directions. 

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B
F
J
I
H
G

120



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B
F
J
I
H
G

121



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B
F
J
I
H

122



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B
F
J
I
H

123



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B
F
J
I

124



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B
F

125



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D
A
C
B

126



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
D

127



• Pop the top vertex off the stack and run DFS.  The set of visited 
nodes are a strong component. Remove this component from the 
graph and stack. 

• Continue until stack is empty.

Finding Strongly Connected 
Components

A

D

E

B

C F

G

H

J I

E
128


