Data Structures in Java

Lecture 19: Applications of DFS

11/30/2015

Daniel Bauer

Contents

* Applications of DFS
e Euler Circuits
* Biconnectivity in Undirected Graphs.

* Finding Strongly Connected Components for
Directed Graphs.

Contents

* Applications of DFS
- Euler Circuits
* Biconnectivity in Undirected Graphs.

* Finding Strongly Connected Components for
Directed Graphs.

Draw tnis Figure

Without lifting your pen off the paper.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

Fuler Paths

 An Euler Path is a path through an undirected
graph that visits every edge exactly once.

O O

O O

This graph does not have an Euler Path.

14

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

O O

This graph does NOT have an Euler Circuit

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

A
@\Q/J

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

17

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

18

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

19

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

20

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

21

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

22

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

23

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

24

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

25

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

Fuler Circuit

* An Euler Circuit is an Euler path that begins and
ends at the same node.

O O

O O

This graph does not have an Euler Path.

27

Necessary Condition for
Euler Circults

e Observation:

* Once we enter v, we need another edge to leave it.

* |f v has an odd number of edges, the last time we enter v,
we will be stuck!

©) O

O ; @

Necessary Condition for
Euler Circults

* Observation:
* Once we enter v, we need another edge to leave it.

* |f v has an odd number of edges, the last time we enter v,
we will be stuck!

Necessary Condition for
Euler Circults

* Observation:
* Once we enter v, we need another edge to leave it.

* |f v has an odd number of edges, the last time we enter v,
we will be stuck!

; o

Necessary Condition for
Euler Circults

* Observation:
* Once we enter v, we need another edge to leave it.

* |f v has an odd number of edges, the last time we enter v,
we will be stuck!

* For an Euler Circuit to exist in a graph, all vertices
need to have even degree (even number of edges).

Necessary Condition for
Euler Paths

* For an Euler Path to exist in a graph, exactly O or 2
vertices must have odd degree.

e Start with one of the odd vertices.

e End In the other one.

)

32

Necessary Condition for
Euler Paths

* For an Euler Path to exist in a graph, exactly O or 2
vertices must have odd degree.

e Start with one of the odd vertices.

e End In the other one.

@\ (

©

33

Conditions for Euler Paths
and Circuits

* For an Euler Circuit to exist in a graph, all vertices
need to have even degree (even number of edges).

 For an Euler Path to exist in a graph, exactly O or 2
vertices need to have odd degree.

* [hese conditions are also sufticient!
(i.e. every graph that contains only vertices of even

degree has an Euler circuit). (Hierholzer, 1873)

34

Seven Bridges of Konigsberg

Leonhard Euler, 1735

The city of Kénigsberg in Prussia (now Kaliningrad, Russia)
was set on both sides of the Pregel River, and included two
large islands which were connected to each other and the

mainland by seven bridges. ~"""WM = =ty ﬁ&& T
i“ﬁaéhﬁ "Mﬁ %"W
sy = mas
| e DS ‘ﬂx s 0%
Euler’'s Problem: me g 253 w5 o

mmﬂ /¥

Find a walk through the city T..ggwm., g et

m‘” e SRS
that crosses every bridge WY s .
exactly once!

qwan Muﬂq R b

mk A or

S@urce W|k|pedla

Seven Bridges of Kdnigsberg

Leonhard Euler, 1735

)\ NINGSHENRGA

» ’ ",-—-"\':;3 ‘M
"“":"'":'. _ :

f)
—e

(1‘3'&4-"':"," v
4"“,“‘* . .. AN

36

Seven Bridges of Konigsberg

Leonhard Euler, 1735

o B - G RN &,
{ g e L N
MEﬂﬂ LA { E ",. e
ts&:ﬁ&@ d‘ i‘,,, T

There is no Euler Path in this graph.

37

Finding Euler Circuits

e Start with any vertex s. First, using DFS find any circuit starting
and ending in s. Mark all edges on the circuit as visited.

 Because all vertices have even degree, we are guaranteed
to not get stuck before we arrive at s again.

* While there are still edges in the graph that are not market
visited:

 FIind the first vertex v on the circuit that has unvisited
edges.

* Find a circuit starting in v and splice this path into the first
circult

38

Finding Euler Circuits

Finding Euler Circuits

Finding Euler Circuits

Finding Euler Circuits

FIndiNg &

uler Circuits

2

Ch

Finding Euler Circuits

124651

Finding Euler Circuits

1240651
45

A

)

124051
46

27610372

A

)

276103 2

Finding Euler Circuits
(g & Ca

745389107

127010324051
48

Finding Euler Circuits
(g & Ca

74589107

12 6103240651
49

Hamiltonian Cycle

* A Hamiltonian Path is a path through an undirected
graph that visits every vertex exactly once (except
that the first and last vertex may be the same).

* A Hamiltonian Cycle is a Hamiltonian Path that
starts and ends in the same node.

O ()

O

g
<%No hamiltonian path. \>

Hamiltonian Cycle

 We can check if a graph contains an Euler Cycle in
inear time.

o Surprisingly, checking if a graph contains a
Hamiltonian Path/Cycle is much harder!

* No polynomial time solution (i.e. O(NX)) is known.

O ()

O

g
<JNQ hamiltonian path. \>

Contents

* Applications of DFS
e Euler Circuits
- Biconnectivity in Undirected Graphs.

* Finding Strongly Connected Components for
Directed Graphs.

52

Connectivity

* An undirected graph is connected if there is a
path from every vertex to every other vertex.

* Jest for connectivity: See if DFS can reach all vertices.

unconnected, grapn

Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.

O (5) (®)
B—0 ©

biconnected
- not biconnectead

Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.

O (5) (®)
B—0 ©

biconnected @
- not biconnectead

Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.

O (5) (®)
B—0 ©

biconnected
- not biconnectead

Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.

(A (5) (n)
B)—0) (&

©)
©
biconnected

- not biconnectead

Blconnectivity

* A graph is biconnected it there is no single vertex
v, such that removing v will disconnect the
remaining graph.

C and D are articulation points.

O (5) (®)
B—0 ©

C_
©
biconnected

- not biconnectead

Testing for Biconnectivity

* A graph G is biconnected if:
* (5 is connected.

* (G does not contain any articulation points.

* Nalve approach:

* Remove each vertex. Test it the resulting graph is still
connected.

V|-O(V]+[E[) = O(|V[? + |V[[E|)

59

Depth First Spanning Tree

* The steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
 Add a back edge for every skipped edge.

60

Depth First Spanning Tree

* The steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.

: ™
—0) ©
©

61

Depth First Spanning Tree

* The steps taken by DFS can be illustrated as a (directed)
spanning tree.

. Add a tree edge for every graph edge taken by DFS.
| &
$ o) (&

©

62

Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
A @
y © ¢

63

Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.

Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
 Add a back edge tor every skipped edge.

Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
 Add a back edge tor every skipped edge.

Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
 Add a back edge tor every skipped edge.

Depth First Spanning Tree

e [he steps taken by DFS can be illustrated as a (directed)
spanning tree.

 Add a tree edge for every graph edge taken by DFS.
 Add a back edge tor every skipped edge.

|[dentifying Articulation Points (1)

* |f the root of the DFS spanning tree has two outgoing
tree edges, the root Is an articulation point.

’ Cis an
é articulation
point.

|[dentifying Articulation Points (1)

* |f the root of the DFS spanning tree has two outgoing
tree edges, the root Is an articulation point.

* Depends on which vertex we start DFS from. 4

A IS not an
articulation
point.

|[dentitying Articulation Points (2)

* Any non-root vertex vis an articulation point ift

 vhas achild wsuch that there is no
back-edge from the subtree below w
to any ancestor of v.

o €

5

Cis an
articulation
point because

. @ of G.

|[dentitying Articulation Points (2)

* Any non-root vertex vis an articulation point ift

* v has a child w such that there is no
back-edge from the subtree below w
to any ancestor of v.

S

e

/2

D |
art

0O
of

S an
iculation

INt because

Preorder Numbers

e Assign numbers to each vertex in the order in which they
are visited by DFS.

e For every tree edge (u,v): Num(u) < Num(v)

* For every back edge (u,v): Num(u) > Num(v)

Num(v)
1

G MmO O 0> <
~N OO OO~ W N

L ow numbers

* For each vertex, find the lowest numbered vertex that is
reachable by following a path that contains
at most one back edge.

Num(v) Low(v)
1 1

G MmO O W > <
N OO 00N W N

L ow numbers

* For each vertex, find the lowest numbered vertex that is
reachable by following a path that contains
at most one back edge.

Num(v) Low(v)
1 1

1
1
1

G MmO O W > <
N OO 00N W N

L ow numbers

* For each vertex, find the lowest numbered vertex that is
reachable by following a path that contains
at most one back edge.

Num(v) Low(v)
1 1

G MmO O W > <
N OO 00N W N

1
1
1
4
4
V4

|[dentitying Articulation
PoINts

* Any non-root vertex vis an articulation point ift

* v has a child w such that there is no
back-edge from the subtree below w
to any ancestor of v.

Num(v) Low(v)
1 1

G MmO O W > <
N OO 00N W N

1
1
1
4
4
V4

|[dentitying Articulation
PoINts

* Any non-root vertex vis an articulation point ift
* v has a child w such that Low(w) > Num(v)

Num(v) Low(v)
1 1

G mm O O W >r <
~N O O B W N

1
1
:
4
4
7

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers
Recursively

Computing Low Numbers

for all tree edges (v,u) {
compute_low(u);
it (Low(u) < Low(Vv))
Low(v) = Low(u)

Contents

* Applications of DFS
e Euler Circuits
* Biconnectivity in Undirected Graphs.

- Finding Strongly Connected Components for
Directed Graphs.

91

Connectivity in Directed
Graphs

* A directed graph is weakly connected if there is
an undirected path from every vertex to every other
vertex.

weakly conngcted graph

Strongly Connected Graphs

* A directed graph is strongly connected if there is
a path from every vertex to every other vertex.

Weakly connected, but not strongly
connected (no other vertex can be
reached from v).

93

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

94

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

95

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

96

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

97

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

98

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

99

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

100

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

101

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

102

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

N

* Reverse direction of edges and run DFS again.

103

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

104

Testing it a Graph is Strongly
Connected

e Run DFS to see if all vertices are reachable from

some start node s.

* Reverse direction of edges and run DFS again.

105

Strongly Connected
Components

e (Goal: Partition the graph into subgraphs such that
each partition is strongly connected.

|
2

106

Strongly Connected
Components

e (Goal: Partition the graph into subgraphs such that

each partition is strongly connected.

107

Strongly Connected
Components

e (Goal: Partition the graph into subgraphs such that

each partition is strongly connected.

108

Strongly Connected
Components

e (Goal: Partition the graph into subgraphs such that

each partition is strongly connected.

.
S
s

o

109

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

g

o

110

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

!

o

111

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

!

o

m U

112

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

m O >

113

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a
stack. It we get stuck, restart search at an arbitrary

unvisited node.

m O > O

114

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

m O > O W

115

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

2

m O > O W

116

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

Des
o o

o

m O >0 0T &« —

117

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitrary
unvisited node.

Des
o o

o

m O >0 Wm <« —T

118

Finding Strongly Connected
Components

 Run DFS and push all fully expanded nodes on a

stack. It we get stuck, restart search at an arbitraéy
unvisited node.

Des
o o

o

m O >0 Wm <« —T

119

Finding Strongly Connected
Components

* Reverse the edge directions.

IS

m O >0 T «—IT O

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

e (Continue until stack is empty.

nodes are a strong component. Remove this component from the
graph and stack.

S

m O >0 T «—IT O

121

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

e (Continue until stack is empty.

nodes are a strong component. Remove this component from the
graph and stack.

S

m O >0 Wm <« —T

122

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

e (Continue until stack is empty.

nodes are a strong component. Remove this component from the
graph and stack.

m O >0 Wm <« —T

123

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.

S

@

m O >0 0m &« —

124

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.

* 2
S

@

m O > O W

125

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.

> &
o e e

Y e—d

@

m O > O

126

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.

]
o0 O
g o o

m U

127

Finding Strongly Connected
Components

* Pop the top vertex off the stack and run DFS. The set of visited

nodes are a strong component. Remove this component from the
graph and stack.

e (Continue until stack is empty.

°<_
U
0 66
G o o

128

