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A General View of Graph
Search

Goals:
* EXxplore the graph systematically starting at sto
 Find a vertex t/Find a path from sto t
* Find the shortest path from s to all vertices.
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A General View of Graph

Search

In every step of the search we maintain

 [he partoft
 [he partoft

e A data struc

(adjacent to

ne graph already explored.
ne graph not yet explored.

ure (an agenda) of next edges
the explored graph).

v —@

Agenda: (v2,vD), (v4,v5), (v4,v7)



A General View of Graph
Search

The graph search algorithms discussed so far differ almost only in
the type of agenda they use:

 DFS: uses a stack.

 BFS: uses a queue.

* Dijkstra’s: uses a priority queue.

* Topological Sort: BFS with constraint on items in the queue.
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Correctness of Dijkstra’s
Algorithm

* We want to show that Dijkstra’s algorithm really finds the

minimum path costs (we don’t miss any shorter solutions
by choosing the shortest edge greedily).

* Proof by induction on the set S of visited nodes.

* Base case:
IS|=1. Trivial. Length shortest path is O.



Correctness of Dijkstra’s
Inductive Step

* Assume the algorithm produces the minimal path cost from s
for the subset S, |S| = k.

* Dijkstra’s algorithm selects the next edge (u,v) leaving S.

 Assume there was a shorter path
from s to v that does not contain (u,v).

* Then that path must contain
another edge (x,y) leaving S.

 The cost of (x,y) is already higher
than (u,v) because we didn't
choose it before (u,v)

* Therefore (u,v) must be on the shortest path.
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Designing a Home Network.
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Designing a Home Network.




Designing a Home Network.

Total cost: 62
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Designing a Home Network.

Total cost:; 44




Designing a Home Network.

Total cost: 32
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Spanning Trees

* (Given an undirected, connected graph G=(V,E).

A spanning tree is a tree that connects all vertices
in the graph. T=(V, Er ¢ E)

V6 V7
12




Spanning Trees

* (Given an undirected, connected graph G=(V,E).

* A spanning tree is a tree that connects all vertices
in the graph. T=(V, Er ¢ E)

T is acyclic. There is
a single path between any
pair of vertices.
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Spanning Trees

* (Given an undirected, connected graph G=(V,E).

* A spanning tree is a tree that connects all vertices
in the graph. T=(V, Er ¢ E)

T is acyclic. There is
a single path between any
pair of vertices.



Spanning Trees

* (Given an undirected, connected graph G=(V,E).

* A spanning tree is a tree that connects all vertices
in the graph. T=(V, Er ¢ E)

T is acyclic. There is
a single path between any
pair of vertices.

the spanning tree.

Any node can be the root of
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Spanning Trees

* (Given an undirected, connected graph G=(V,E).

A spanning tree is a tree that connects all vertices
in the graph. T=(V, Er ¢ E)
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Number of edges in a spanning tree: |V|-1
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Spanning Trees,
Applications

Constructing a computer/power networks (connect all vertices with the
smallest amount of wire).

Clustering Data.

Dependency Parsing of Natural Language
(directed graphs. This is harder).

Constructing mazes.

Approximation algorithms for harder graph problems.

17



Minimum Spanning Trees

* (GGiven a weighted undirected graph G=(E,V).

* A minimum spanning tree is a spanning tree with
the minimum sum of edge weights.




Minimum Spanning Trees

* (GGiven a weighted undirected graph G=(E,V).

* A minimum spanning tree is a spanning tree with
the minimum sum of edge weights.
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(often there are multiple minimuwm spanning trees)



Prim’s Algorithm for finding MSTs

* Another greedy algorithm. A variant of Dijkstra’s
algorithm.

e Cost annotations for each vertex v reflect the lowest
weight of an edge connecting v to other vertices
already visited.

 [That means there might be a lower-weight edge
from another vertices that have not been seen yet.

 Keep vertices on a priority queue and always
expand the vertex with the lowest cost annotation
first.
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Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm

Running time: Same as Dijkstra’s Algorithm
O([E| log |V|)




Kruskal's Algorithm for finding MSTs

* Kruskal's algorithm maintains a “forest” of trees.
* |nitially each vertex is its own tree.

e Sort edges by weight. Then attempt to add them one-by
one. Adding an edge merges two trees into a new tree.

* |t an edge connects two nodes that are already In the
same tree it would produce a cycle. Reject it.

30



Kruskal's Algorithm

Sort edges (or keep them on a heap)
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Kruskal's Algorithm

32

— 00 N O B~ B B W NN



Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm

(v1,v4) OK
(VB,v7) OK
(viv2) 2 OK
(v3,v4) 2 OK
(v2,v4) 3 reject
(vi,v3) 4 reject
(v3,v6) 4 reject
(v4v7) 4  OK
(Vb,v7) ©

(vd,vb) 7

(v4,v6) 8

40 (V2,V5) 10



Kruskal's Algorithm

(v1,v4) OK
(VB,v7) OK
(viv2) 2 OK
(v3,v4) 2 OK
(v2,v4) 3 reject
(vi,v3) 4 reject
(v3,v6) 4 reject
(vav7) 4  OK
(vsv7) 6  OK
(vd,vb) 7

(v4,v6) 8

i (v2,vb) 10
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Implementing Kruskal's
Algorithm

Try to add edges one-by-one in increasing order. Build
a heap in O(|E|). Each deleteMin takes O(log |E|)

How to maintain the forest?
 Represent each tree in the forest as a set.

 When adding an edge, check it both vertices are in
the same set. If not, take the union of the two sets.

* This can be done efficiently using a disjoint set data
structure (Weiss Chapter 8).

Total turns out to be: O(|E| log |V|)



Application: Rierarchical
Clustering

* Thisis a very common data analysis problem.

» (Group together data items based on similarity
(defined over some feature set).

* Discover classes and class relationships.
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/00 Data Set

101 animals

represent each

data item as a vector
of integers

(15 attributes).
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https://archive.ics.uci.edu/ml/datasets/Zoo
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/00 Data Set I\/IST

e MST over 12 random animals.



/00 Data Set I\/I T

* Remove k-1 lowest cost edges
to produce Kk clusters.




/00 Data Set I\/I T

* Remove k-1 lowest cost edges
to produce Kk clusters.




/00 Data Set MST
&

* Remove k-1 lowest cost edges
to produce Kk clusters.




/00 Data Set I\/IST

* Remove k-1 lowest cost edges
to produce Kk clusters.




