### Data Structures in Java

Lecture 18: Spanning Trees

11/23/2015

**Daniel Bauer** 

### A General View of Graph Search

#### Goals:

- Explore the graph systematically starting at s to
  - Find a vertex t / Find a path from s to t.
  - Find the shortest path from s to all vertices.
  - •



### A General View of Graph Search

In every step of the search we maintain

- The part of the graph already explored.
- The part of the graph not yet explored.
- A data structure (an agenda) of next edges (adjacent to the explored graph).



Agenda: (v2,v5), (v4,v5), (v4,v7)

### A General View of Graph Search

The graph search algorithms discussed so far differ almost only in the type of agenda they use:

- DFS: uses a stack.
- BFS: uses a queue.
- Dijkstra's: uses a priority queue.
- Topological Sort: BFS with constraint on items in the queue.



Agenda: (v2,v5), (v4,v5), (v4,v7)

# Correctness of Dijkstra's Algorithm

- We want to show that Dijkstra's algorithm really finds the minimum path costs (we don't miss any shorter solutions by choosing the shortest edge greedily).
- Proof by induction on the set S of visited nodes.
- Base case:
   |S|=1. Trivial. Length shortest path is 0.

S

# Correctness of Dijkstra's Inductive Step

- Assume the algorithm produces the minimal path cost from s
  for the subset S, |S| = k.
- Dijkstra's algorithm selects the next edge (u,v) leaving S.
- Assume there was a shorter path from s to v that does not contain (u,v).
  - Then that path must contain another edge (x,y) leaving S.
  - The cost of (x,y) is already higher than (u,v) because we didn't choose it before (u,v)
- Therefore (u,v) must be on the shortest path.







Total cost: 62



Total cost: 32

3 base

- Given an undirected, connected graph G=(V,E).
- A spanning tree is a tree that connects all vertices in the graph. T=(V, E<sub>T</sub> ⊆ E)



Given an undirected, connected graph G=(V,E).

 A spanning tree is a tree that connects all vertices in the graph. T=(V, E<sub>T</sub> ⊆ E)

T is acyclic. There is a single path between any pair of vertices.



Given an undirected, connected graph G=(V,E).

 A spanning tree is a tree that connects all vertices in the graph.  $T=(V, E_T \subseteq E)$ 

T is acyclic. There is

pair of vertices.

a single path between any Vз V3 **V**5 V7 **V**5 V7

Given an undirected, connected graph G=(V,E).

 A spanning tree is a tree that connects all vertices in the graph. T=(V, E<sub>T</sub> ⊆ E)

T is acyclic. There is



Any node can be the root of the spanning tree.

- Given an undirected, connected graph G=(V,E).
- A spanning tree is a tree that connects all vertices in the graph. T=(V, E<sub>T</sub> ⊆ E)



Number of edges in a spanning tree: |V|-1

# Spanning Trees, Applications

- Constructing a computer/power networks (connect all vertices with the smallest amount of wire).
- Clustering Data.
- Dependency Parsing of Natural Language (directed graphs. This is harder).
- Constructing mazes.
- •
- Approximation algorithms for harder graph problems.
- . . .

### Minimum Spanning Trees

- Given a weighted undirected graph G=(E,V).
- A minimum spanning tree is a spanning tree with the minimum sum of edge weights.



## Minimum Spanning Trees

- Given a weighted undirected graph G=(E,V).
- A minimum spanning tree is a spanning tree with the minimum sum of edge weights.



(often there are multiple minimum spanning trees)

### Prim's Algorithm for finding MSTs

- Another greedy algorithm. A variant of Dijkstra's algorithm.
- Cost annotations for each vertex v reflect the lowest weight of an edge connecting v to other vertices already visited.
  - That means there might be a lower-weight edge from another vertices that have not been seen yet.
- Keep vertices on a priority queue and always expand the vertex with the lowest cost annotation first.



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While *q* is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While q is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (cost(u,v) < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))



Use a Priority Queue q

- for all v ∈ V
   set v.cost = ∞, set v.visited = false
- Choose any vertex s.
   set s.cost = 0, s.visited = true;
- q.insert(s)
- While *q* is not empty:
  - (costu, u) <- q.deleteMin()</li>
  - if not u.visited:
    - u.visited = True
    - for each edge (u,v):
      - if not v.visited:
        - if (**cost(u,v)** < v.cost)
          - v.cost = cost(u,v)
          - v.parent = u
          - q.insert((v.cost,v))

Running time: Same as Dijkstra's Algorithm
O(|E| log |V|)

### Kruskal's Algorithm for finding MSTs

- Kruskal's algorithm maintains a "forest" of trees.
- Initially each vertex is its own tree.
- Sort edges by weight. Then attempt to add them one-by one. Adding an edge merges two trees into a new tree.
- If an edge connects two nodes that are already in the same tree it would produce a cycle. Reject it.



Sort edges (or keep them on a heap)



| (v1,v2)  | 2  |
|----------|----|
| (v1,v3)  | 4  |
| (v1, v4) | 1  |
| (v2, v4) | 3  |
| (v2, v5) | 10 |
| (v3, v4) | 2  |
| (v3, v6) | 4  |
| (v4, v5) | 7  |
| (v4, v6) | 8  |
| (v4, v7) | 4  |
| (v5, v7) | 6  |
| (v6, v7) | 1  |



```
(v1, v4)
(v6, v7)
(v1,v2) 2
(v3, v4) 2
        3
(v2, v4)
(v1,v3) 4
(v3, v6) 4
(\vee 4, \vee 7) 4
        6
(v5, v7)
(v4, v5)
(v4, v6)
          8
(v2, v5)
           10
```



| (v1,v4)  | 1  | OK |
|----------|----|----|
| (v6, v7) | 1  |    |
| (v1, v2) | 2  |    |
| (v3,v4)  | 2  |    |
| (v2, v4) | 3  |    |
| (v1,v3)  | 4  |    |
| (v3,v6)  | 4  |    |
| (v4, v7) | 4  |    |
| (v5, v7) | 6  |    |
| (v4, v5) | 7  |    |
| (v4, v6) | 8  |    |
| (v2, v5) | 10 |    |



| (v1,v4)            | 1  | OK |
|--------------------|----|----|
| (v6, v7)           | 1  | OK |
| (v1, v2)           | 2  |    |
| (v3,v4)            | 2  |    |
| (v2, v4)           | 3  |    |
| (v1,v3)            | 4  |    |
| (v3,v6)            | 4  |    |
| $(\vee 4, \vee 7)$ | 4  |    |
| (v5, v7)           | 6  |    |
| (v4, v5)           | 7  |    |
| (v4, v6)           | 8  |    |
| (v2, v5)           | 10 |    |



| (v1, v4) | 1  | OK |
|----------|----|----|
| (v6, v7) | 1  | OK |
| (v1,v2)  | 2  | OK |
| (v3,v4)  | 2  |    |
| (v2, v4) | 3  |    |
| (v1,v3)  | 4  |    |
| (v3,v6)  | 4  |    |
| (v4, v7) | 4  |    |
| (v5, v7) | 6  |    |
| (v4, v5) | 7  |    |
| (v4, v6) | 8  |    |
| (v2, v5) | 10 |    |



| (v1, v4) | 1  | OK |
|----------|----|----|
| (v6, v7) | 1  | OK |
| (v1, v2) | 2  | OK |
| (v3,v4)  | 2  | OK |
| (v2, v4) | 3  |    |
| (v1,v3)  | 4  |    |
| (v3,v6)  | 4  |    |
| (v4, v7) | 4  |    |
| (v5, v7) | 6  |    |
| (v4, v5) | 7  |    |
| (v4, v6) | 8  |    |
| (v2, v5) | 10 |    |



| (v1, v4) | 1  | OK     |
|----------|----|--------|
| (v6,v7)  | 1  | OK     |
| (v1, v2) | 2  | OK     |
| (v3,v4)  | 2  | OK     |
| (v2, v4) | 3  | reject |
| (v1, v3) | 4  |        |
| (v3,v6)  | 4  |        |
| (v4, v7) | 4  |        |
| (v5, v7) | 6  |        |
| (v4, v5) | 7  |        |
| (v4, v6) | 8  |        |
| (v2, v5) | 10 |        |



| (v1,v4)  | 1  | OK     |
|----------|----|--------|
| (v6,v7)  | 1  | OK     |
| (v1,v2)  | 2  | OK     |
| (v3,v4)  | 2  | OK     |
| (v2, v4) | 3  | reject |
| (v1,v3)  | 4  | reject |
| (v3,v6)  | 4  |        |
| (v4, v7) | 4  |        |
| (v5, v7) | 6  |        |
| (v4, v5) | 7  |        |
| (v4, v6) | 8  |        |
| (v2, v5) | 10 |        |



| (v1,v4)  | 1  | OK     |
|----------|----|--------|
| (v6,v7)  | 1  | OK     |
| (v1,v2)  | 2  | OK     |
| (v3,v4)  | 2  | OK     |
| (v2, v4) | 3  | reject |
| (v1,v3)  | 4  | reject |
| (v3,v6)  | 4  | reject |
| (v4, v7) | 4  |        |
| (v5,v7)  | 6  |        |
| (v4, v5) | 7  |        |
| (v4, v6) | 8  |        |
| (v2, v5) | 10 |        |

39



| (v1,v4)  | 1  | OK     |
|----------|----|--------|
| (v6, v7) | 1  | OK     |
| (v1,v2)  | 2  | OK     |
| (v3,v4)  | 2  | OK     |
| (v2, v4) | 3  | reject |
| (v1,v3)  | 4  | reject |
| (v3,v6)  | 4  | reject |
| (v4, v7) | 4  | OK     |
| (v5,v7)  | 6  |        |
| (v4, v5) | 7  |        |
| (v4,v6)  | 8  |        |
| (v2.v5)  | 10 |        |



| (v1,v4)            | 1  | OK     |
|--------------------|----|--------|
| (v6,v7)            | 1  | OK     |
| (v1,v2)            | 2  | OK     |
| (v3,v4)            | 2  | OK     |
| (v2, v4)           | 3  | reject |
| (v1,v3)            | 4  | reject |
| (v3,v6)            | 4  | reject |
| $(\vee 4, \vee 7)$ | 4  | OK     |
| (v5,v7)            | 6  | OK     |
| (v4, v5)           | 7  |        |
| (v4,v6)            | 8  |        |
| (v2, v5)           | 10 |        |

# Implementing Kruskal's Algorithm

- Try to add edges one-by-one in increasing order. Build a heap in O(|E|). Each deleteMin takes O(log |E|)
- How to maintain the forest?
  - Represent each tree in the forest as a set.
  - When adding an edge, check if both vertices are in the same set. If not, take the union of the two sets.
  - This can be done efficiently using a *disjoint set* data structure (Weiss *Chapter 8*).

# Application: Hierarchical Clustering

- This is a very common data analysis problem.
- Group together data items based on similarity (defined over some feature set).
- Discover classes and class relationships.

## Zoo Data Set

101 animals

represent each data item as a vector of integers (15 attributes).

|          | bear | chicke | tortoise | flea |
|----------|------|--------|----------|------|
| hair     | 1    | 0      | 0        | 0    |
| feathers | 0    | 1      | 0        | 0    |
| eggs     | 0    | 1      | 1        | 1    |
| milk     | 1    | 0      | 0        | 0    |
| airborne | 0    | 1      | 0        | 0    |
| aquatic  | 0    | 0      | 0        | 0    |
| predator | 1    | 0      | 0        | 0    |
| toothed  | 1    | 0      | 0        | 0    |
| backbone | 1    | 1      | 1        | 0    |
| breathes | 1    | 1      | 1        | 1    |
| venomou  | 0    | 0      | 0        | 0    |
| fins     | 0    | 0      | 0        | 0    |
| legs     | 4    | 2      | 4        | 6    |
| tail     | 0    | 1      | 1        | 0    |
| domestic | 0    | 1      | 0        | 0    |

• •



cavy Remove k-1 lowest cost edges 0.40 to produce k clusters. sealion 0.40sole 0.07 skua dogfish parakeet vulture crow 0.07flamingo 0.33moth 0.00housefly 70.0gnat 46

cavy

0.40

 Remove k-1 lowest cost edges to produce k clusters.



cavy

• Remove k-1 lowest cost edges to produce k clusters.



cavy

• Remove k-1 lowest cost edges to produce k clusters.

