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Today: Graph Traversals
• Depth First Search (a generalization of pre-order 

traversal on trees to graphs, users a Stack) 

• Breadth First Search (uses a Queue) 

• Dijkstra’s algorithm to find weighted shortest paths 
(uses a Priority Queue) 

• Topological sort for Directed Acyclic Graphs. 

• Application: Shortest Project Completion Time.
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• A Graph is a pair of two sets G=(V,E):  

• V: the set of vertices (or nodes) 

• E: the set of edges. 
• each edge is a pair (v,w) where 

v,w ∈ V 

Graphs
v1

v3 v4

v5

v2

v6

V = {v1, v2, v3, v4, v5, v6 }
E = {(v1, v2), (v1, v3), (v2, v3),(v2, v5),(v3, v4),  
        (v3, v6),(v4, v5), (v4, v6), (v5, v6)}
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Edges
• Graphs may be directed or undirected. 

• In directed graphs, the edge pairs are ordered.  

• Edges often have some weight or cost associated 
with them (weighted graphs).

v1

v3 v4

v5

v2

v6
E = {(v1, v3), (v2, v1),(v2, v3), (v3, v4),  
        (v3, v5), (v4, v6), (v5, v6)}

V = {v1, v2, v3, v4, v5, v6 }

directed and weighted graph

1 3

5 6
2

3

1
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Paths

v1

v3 v4

v5

v2

v6

1 3

5 6
2

3

1

Path from v1 to v6, length 3, cost 8
(v1, v3), (v3, v5), (v5, v6)

• length of a path:   
   k-1 = number of edges on path 

• cost of a path:  
   Sum of all edge costs.  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• Vertex w is adjacent to vertex v iff (w,v) ∈ E. 

• A path is a sequence of vertices w1, w2, …, wk 
such that (wi, wi+1) ∈ E. 



• Represent graph G = (E,V), option 2: Adjacency Lists 

• For each vertex, keep a list of all adjacent vertices. 

Representing Graphs

v0

v2 v3

v4

v1

v5

1 2

3 5
4

4

3

v0

v1

v2

v3

v4

v5

v0:1 v2:3

v2:2

v3:3 v4:4
v5:3
v5:4
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• Represent graph G = (E,V), option 2: Adjacency Lists 

• For each vertex, keep a list of all adjacent vertices. 

Representing Graphs

v0

v2 v3

v4

v1

v5

1 2

3 5
4

4

3

v0

v1

v2

v3

v4

v5

v0:1 v2:3

v2:2

v3:3 v4:4
v5:3
v5:4

Space requirement:6



Graph Search

7



Graph Search
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Graph Search

G

Letters indicate junctions where a decision must be made.

H
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Graph Search
AB

C

D

E

G

HH

F
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Graph Search
AB

C

D

E

G

HH

F

11



Graph Search:  
Depth First Search (DFS)

• Goal: Systematically explore the graph, starting at vertex s 
(source) touching all edges. 

• Graph Traversals are the core ingredient of most graph 
algorithms.

v1 v2

v3 v4 v5

v6 v7

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• push all vertices adjacent to u 

to the stack.

v1

Use a stack.
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Graph Search:  
Depth First Search (DFS)

• Goal: Systematically explore the graph, starting at vertex s 
(source) touching all edges. 

• Graph Traversals are the core ingredient of most graph 
algorithms.

v1 v2

v3 v4 v5

v6 v7

v2
v4

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• push all vertices adjacent to u 

to the stack.

Use a stack.
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Graph Search:  
Depth First Search (DFS)

• Goal: Systematically explore the graph, starting at vertex s 
(source) touching all edges. 

• Graph Traversals are the core ingredient of most graph 
algorithms.

v1 v2

v3 v4 v5

v6 v7

v2

v3
v6

v5
v7

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• push all vertices adjacent to u 

to the stack.

Use a stack.
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• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• push all vertices adjacent to u 

to the stack.

Use a stack.Use a stack.

Graph Search:  
Depth First Search (DFS)

• Goal: Systematically explore the graph, starting at vertex s 
(source) touching all edges. 

• Graph Traversals are the core ingredient of most graph 
algorithms.

v1 v2

v3 v4 v5

v6 v7

v2

v6

v5
v7
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• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• push all vertices adjacent to u 

to the stack.

Use a stack.Use a stack.

Graph Search:  
Depth First Search (DFS)

• Goal: Systematically explore the graph, starting at vertex s 
(source) touching all edges. 

• Graph Traversals are the core ingredient of most graph 
algorithms.

v1 v2

v3 v4 v5

v6 v7

v2

v6

v5
v7

Problem: This Graph 
contains cycles!
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v1

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

visited {}
16



Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: {v1}
v4

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: {v1,v4}
v5
v7
v6
v3

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: {v1,v4,v3}
v5
v7
v6

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

v6
v1
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: {v1,v4,v3}
v5
v7
v6

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

v6
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: {v1,v4,v3,v6}
v5
v7
v6

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: 
v5
v7

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6}
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: 
v5

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6,v7}
23
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: 
v5

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6,v7}
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: 

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6,v7,v5}
25
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

v2 Visited: 

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6,v7,v5}
26



Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

Visited: 

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6,v7,v5,v2}
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Depth First Search (DFS) with 
Visited Set

v1 v2

v3 v4 v5

v6 v7

Visited: 

• Push s to the stack.  
• While the stack is not empty: 

• u <- stack.pop() 
• if u is not in visited: 

• add u to visited. 
• push all vertices adjacent to u 

to the stack.

Use a stack and a set visited.

{v1,v4,v3,v6,v7,v5,v2}

Running time: O(|E|)
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Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

28

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1



Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

29

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1

v4



Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

30

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1

v4

v3



Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

31

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1

v4

v3

v6



Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

32

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1

v4

v3

v6
v7



Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

33

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1

v4

v3

v6
v7 v5



Recursive DFS (with visited 
marker kept on vertex objects)

v1 v2

v3 v4 v5

v6 v7

34

void dfs( Vertex v ) { 
  v.visited = true; 
  for each Vertex w adjacent to v 
    if( !w.visited ) 
      dfs( w ); 
}

DFS Spanning Tree
v1

v4

v3

v6
v7 v5

v2



DFS on the Entire Graph

v1 v2

v3 v4 v5

v6 v7

35

• It is possible that not all vertices are reachable from a 
designated start vertex.  



v1 v2

v3 v4 v5

v6 v7
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• It is possible that not all vertices are reachable from a 
designated start vertex.  

DFS on the Entire Graph



v1 v2

v3 v4 v5

v6 v7
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• It is possible that not all vertices are reachable from a 
designated start vertex.  

DFS on the Entire Graph



v1 v2

v3 v4 v5

v6 v7
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• It is possible that not all vertices are reachable from a 
designated start vertex.  

v1:    v2, v4 
v2:    v4, v5 
v3:    v1, v6 
v4:    v5 
v5:    
v6:    v7 
v7:    v5

DFS on the Entire Graph



v1 v2

v3 v4 v5

v6 v7

39

• If stack is empty or we reach top of recursion, scan through 
adjacency list until we find an unseen starting node.

• It is possible that not all vertices are reachable from a 
designated start vertex.  

v1:    v2, v4 
v2:    v4, v5 
v3:    v1, v6 
v4:    v5 
v5:    
v6:    v7 
v7:    v5

DFS on the Entire Graph



v1 v2

v3 v4 v5

v6 v7

39

• If stack is empty or we reach top of recursion, scan through 
adjacency list until we find an unseen starting node.

• It is possible that not all vertices are reachable from a 
designated start vertex.  

v1:    v2, v4 
v2:    v4, v5 
v3:    v1, v6 
v4:    v5 
v5:    
v6:    v7 
v7:    v5

Running time for complete DFS traversal: O(|V|+|E|)

DFS on the Entire Graph



Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1}Queue v1
40



Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4}Queue v2 v4
41



Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5}Queue v4 v5
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Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue v5 v7 v6 v3
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Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue v7 v6 v3
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Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue v6 v3
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Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue v3
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Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue
47



Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue

Running time (to traverse 
the entire graph): O(|V|+|E|)
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Breadth-First Search (BFS)

v1 v2

v3 v4 v5

v6 v7

• Enqueue s 
• Add s to visited 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is  

adjacent to u: 
• if v is not in visited: 

• Add v to visited. 
• enqueue(v).

Use a queue and a set visited.

Visited: {v1,v2,v4,v5,v7,v6,v3}Queue

Running time (to traverse 
the entire graph): O(|V|+|E|)

BFS will traverse the entire 
graph even without a 
visited set. 
DFS can get stuck in a 
loop.
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Finding Shortest Paths
• Goal: Find the shortest path between two vertices s and t.

v1 v2

v3 v4 v5

v6 v7

What is the shortest path between v3 and v7?48



Finding Shortest Paths
• Goal: Find the shortest path between two vertices s and t.

v1 v2

v3 v4 v5

v6 v7

What is the shortest path between v3 and v7?

length 3

v1

v4

v7

v3

49



Finding Shortest Paths

• It turns out that finding the shortest path between s and 
ALL other vertices is just as easy. This problem is called 
single-source shortest paths. 

v1 v2

v3 v4 v5

v6 v7

• Goal: Find the shortest path between two vertices s and t.

50



Finding Shortest Paths

• It turns out that finding the shortest path between s and 
ALL other vertices is just as easy. This problem is called 
single-source shortest paths. 

v1 v2

v3 v4 v5

v6 v7

• Goal: Find the shortest path between two vertices s and t.

1

1

2

2 3

3

50



Finding Shortest Paths

• It turns out that finding the shortest path between s and 
ALL other vertices is just as easy. This problem is called 
single-source shortest paths. 

v1 v2

v3 v4 v5

v6 v7

• Goal: Find the shortest path between two vertices s and t.

1

1

2

2 3

3

50



Finding Shortest Paths with 
BFS

v1 v2

v4 v5

v6 v7

∞

∞

∞

∞

∞∞

0

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)

Queue v3

v3

51



Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7
1

∞

∞

∞

∞1

0

Queue v1 v6

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)
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Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7
1

2

∞

∞

21

0

Queue v6 v2 v4

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)
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Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7
1

2

∞

∞

21

0

Queue v2 v4

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)
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Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7
1

2

∞

3

21

0

Queue v4 v5

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)
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Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7
1

2

3

3

21

0

Queue v5 v7

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)

56



Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7
1

2

3

3

21

0

Queue v7

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(v)

57



• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(u)

Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7

1
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3

3

21

0
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• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.distance = u.distance + 1 
• enqueue(u)

Finding Shortest Paths with 
BFS

v1 v2

v3 v4 v5

v6 v7

1

2

3

3

21

0

Queue
This is just BFS. Running time: O(|V|+|E|)
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Finding Shortest Paths with 
BFS - Back pointers

v1 v2

v3 v4 v5

v6 v7
1

∞

∞

∞

∞1

0

Queue v1 v6

Maintain pointers to the previous node on the shortest path.

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.prev = u
• v.distance = u.distance + 1 
• enqueue(v)
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Finding Shortest Paths with 
BFS - Back pointers

v1 v2

v3 v4 v5

v6 v7
1

2

∞

∞

21

0

Queue

Maintain pointers to the previous node on the shortest path.

• s.distance = 0 
• for all v ∈ V set v.distance = ∞ 
• enqueue s 
• While the queue is not empty: 

• u <- dequeue() 
• for each vertex v that is adjacent  

to u: 
• if v.distance == ∞ 

• v.prev = u
• v.distance = u.distance + 1 
• enqueue(v)v6 v2 v4
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Weighted Shortest Paths
• Goal: Find the shortest path between two vertices s and t.

v1 v2

v3 v4 v5

v6 v7

What is the shortest path between v2 and v6?
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Weighted Shortest Paths
• Goal: Find the shortest path between two vertices s and t.

v1 v2

v3 v4 v5

v6 v7

What is the shortest path between v2 and v6?

2

4

2
1 3 10

2

4 6
1

5 8

length 2  
cost 11

• Normal BFS will find this path.
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Weighted Shortest Paths
• Goal: Find the shortest path between two vertices s and t.

v1 v2

v3 v4 v5

v6 v7

What is the shortest path between v2 and v6?

2

4

2
1 3 10

2

4 6
1

5 8

length 3  
cost 8

• This path is shorter.
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Negative Weights
• We normally expect the shortest path to be simple. 

• Edges with Negative Weights can lead to negative cycles. 

• The concept of “shortest path” is then not clearly defined.
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v6 v7

What is the shortest path between v2 and v6?

2

4

2
-7 3 10

2

4 6
1

5 8

64



Dijkstra’s Algorithm for 
Weighted Shortest Path

65



Dijkstra’s Algorithm for 
Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest 
cost using only vertices visited so far.
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Dijkstra’s Algorithm for 
Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest 
cost using only vertices visited so far.
• That means there might be a lower-cost path 

through other vertices that have not been seen 
yet.

65



Dijkstra’s Algorithm for 
Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest 
cost using only vertices visited so far.
• That means there might be a lower-cost path 

through other vertices that have not been seen 
yet.

• Keep nodes on a priority queue and always 
expand the vertex with the lowest cost annotation  
first!
• Intuitively, this means we will never 

overestimate the cost and miss lower-cost path.
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Dijkstra’s Algorithm for 
Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest 
cost using only vertices visited so far.
• That means there might be a lower-cost path 

through other vertices that have not been seen 
yet.

• Keep nodes on a priority queue and always 
expand the vertex with the lowest cost annotation  
first!
• Intuitively, this means we will never 

overestimate the cost and miss lower-cost path.

65

← This is a greedy algorithm



Dijkstra’s Algorithm

v2

v3 v4 v5

v6 v7

2

4

2
1 3 10

2

4 6
1

5 8

Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

∞

∞∞

∞ ∞

∞

v1
0
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Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm

v1 v2

v3 v4 v5

v6 v7

2
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2
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2

4 6
1

5 8
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Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm
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v6 v7
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Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm
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Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm
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2

4

2
1 3 10

2

4 6
1

5 8

0 2

13

9 5

3

70



Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm
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Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm
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Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0, s.visited = true; 
• q.insert(s) 

• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm
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• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm - a subtle bug
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v7.cost +cost(v6,v7) = 6



• While q is not empty: 
• u <- q.deleteMin() 
• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (u.cost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert(v)

Dijkstra’s Algorithm - a subtle bug
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v6 v7
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v7.cost +cost(v6,v7) = 6

• v7 is already in q, and has not been visited. 
• does insert(v7) create a new entry in the q or update the existing one? 
• if q is a heap, updating the cost will change v7 everywhere in the heap 

and might make the heap invalid.



Dijkstra’s Algorithm - Fixed
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v7.cost +cost(v6,v7) = 6

Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0 
• q.insert((0, s)) 

• While q is not empty: 
• (costu, u) <- q.deleteMin() 
• if not u.visited:

• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (costu + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert((v.cost, v))

• Keep a separate cost 
object in the queue 
that isn’t updated.  

• Ignore duplicate 
entries for vertices. 



Dijkstra’s Running Time
• There are |E| insert and 

deleteMin operations.  

• The maximum size of 
the priority queue is 
O(|E|). Each insert 
takes O(log |E|) 

  O(|E| log |E|)

76

Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0 
• q.insert((0, s)) 

• While q is not empty: 
• (costu, u) <- q.deleteMin() 
• if not u.visited: 

• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (ucost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert((v.cost, v))



Dijkstra’s Running Time
• There are |E| insert and 

deleteMin operations.  

• The maximum size of 
the priority queue is 
O(|E|). Each insert 
takes O(log |E|) 

  O(|E| log |E|)

76

Use a Priority Queue q 
• for all v ∈ V  

 set v.cost = ∞, set v.visited = false 
• s.cost = 0 
• q.insert((0, s)) 

• While q is not empty: 
• (costu, u) <- q.deleteMin() 
• if not u.visited: 

• u.visited = true 
• for each edge (u,v): 

• if not v.visited: 
• if (ucost + cost(u,v) < v.cost) 

• v.cost = u.cost + cost(u,v) 
• v.prev = u 
• q.insert((v.cost, v))

because |E| ≤ |V|2,  

and therefore 
log |E| ≤ 2 log |V|

=O(|E| log |V|)
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W4115 W4156

W4701

A topological sort of a DAG is an ordering of its vertices  
such that if there is a path from u to w, u appears before w  
in the ordering.

77

Topological Sort in DAGs



Topological Sort in DAGs
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A topological sort of a DAG is an ordering of its vertices  
such that if there is a path from u to w, u appears before w  
in the ordering.
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Topological Sort in DAGs

W1004 W3134

W1007 W3137

W3157

W3203

W3261

W4111

W4115 W4156

W4701

A topological sort of a DAG is an ordering of its vertices  
such that if there is a path from u to w, u appears before w  
in the ordering.
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Topological Sort in DAGs

W1004 W3134

W1007 W3137

W3157

W3203

W3261

W4111

W4115 W4156

W4701

A topological sort of a DAG is an ordering of its vertices  
such that if there is a path from u to w, u appears before w  
in the ordering.

W4111 W4701W3261W3134 W3137 W3157W1004 W3203W1007
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Topological Sort in DAGs

W1004 W3134

W1007 W3137

W3157

W3203

W3261

W4111

W4115 W4156

W4701

A topological sort of a DAG is an ordering of its vertices  
such that if there is a path from u to w, u appears before w  
in the ordering.

W4115W4111 W4701 W4156W3261W3134 W3137 W3157W1004 W3203W1007
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Application: Critical Path 
Analysis

• An Event-Node Graph is a DAG in which  
• Edges represent tasks, weight represents the 

time it takes to complete the task.  
• Vertices represent the event of completing a set 

of tasks. 
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Application: Critical Path 
Analysis

• We are interested in the earliest completion time.  
(Earliest time we can reach the final event). 

• This is equivalent to finding the longest path 
through the DAG (why does this not work with 
cycles?).
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Application: Critical Path 
Analysis

• If an event has more than one incoming event, all 
tasks have to be finished before other tasks can 
proceed.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Can use Dijkstra’s algorithm O(|E| log |V|). 

• We now try to find the longest path.
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Application: Critical Path 
Analysis

• For DAGs we can improve on Dijkstra’s  
O(|E| log |V|) bound.  

• Use topological sort.
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Application: Critical Path 
Analysis

• Basic idea: Compute the earliest completion time 
for each event.  

• Process events in topological order.
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Need at least 5 time 
steps to get here
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Computing Topological 
Order

• Basic idea: Use BFS! 

• To compute topological order, we need to find all 
incoming edges to a node first before visiting the 
node.
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Computing Topological 
Order

• Example Application: Computing earliest 
completion time.  

• First annotate each vertex with the number of 
incoming edges (the indegree).
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Computing Topological 
Order
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output:

v1
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Computing Topological 
Order
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output: v1
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output: v1
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v4
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output: v1

v4
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output: v1

v5
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output:

v6 v9
v5
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output:

v9 v7
v5 v6

105

v1 v2 v4v3



Computing Topological 
Order

v1

v2 v4

v5

v3

v6

write 

 articles

commision  
photographs

edit proofread layout

process  

photographs  

v7
printing distribution

v8

web layout
v9

upload 

online version

3

2

1
1

1
3

2

3 6

1

0

0

0

0

0 0 0 1

0

• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output:

v7
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output:
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes.  

• If the indegree of any new vertex becomes 0, enqueue it. 

Queue:
Output: v5 v6 v9 v7 v8
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Topological Sort - Running 
Time

• First annotate each vertex with its indegree. 
• While the queue is not empty, dequeue a vertex, print it and  

decrement the indegree of its adjacent nodes.  
• If the indegree of any new vertex becomes 0, enqueue it. 
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Topological Sort - Running 
Time

• First annotate each vertex with its indegree. 
• While the queue is not empty, dequeue a vertex, print it and  

decrement the indegree of its adjacent nodes.  
• If the indegree of any new vertex becomes 0, enqueue it. 

This is just BFS. Running time: O(|V|+|E|)
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
Queue:
Output:

v1
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Queue:
Output: v1
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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Queue:
Output: v1
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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Queue:
Output: v1
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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Queue:
Output:

v5
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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Queue:
Output:
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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Queue:
Output:
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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Output:
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• While the queue is not empty, dequeue a vertex, print it and  
decrement the indegree of its adjacent nodes. Update earliest 
completion time for each adjacent node.

• If the indegree of any new vertex becomes 0, enqueue it. 
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