Data Structures in Java

Lecture 17: Traversing Graphs. Shortest Paths.

10/18/2015

Daniel Bauer

Today: Graph Traversals

- Depth First Search (a generalization of pre-order traversal on trees to graphs, users a Stack)
- Breadth First Search (uses a Queue)
- Dijkstra's algorithm to find weighted shortest paths (uses a Priority Queue)
- Topological sort for Directed Acyclic Graphs.
- Application: Shortest Project Completion Time.

Graphs

- A Graph is a pair of two sets $G=(V, E)$:
- V : the set of vertices (or nodes)
- E : the set of edges.
- each edge is a pair (v, w) where $v, w \in V$

$$
\begin{aligned}
\mathrm{V}= & \left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}\right\} \\
\mathrm{E}= & \left\{\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right),\left(\mathrm{V}_{1}, \mathrm{~V}_{3}\right),\left(\mathrm{V}_{2}, \mathrm{~V}_{3}\right),\left(\mathrm{V}_{2}, \mathrm{~V}_{5}\right),\left(\mathrm{V}_{3}, \mathrm{~V}_{4}\right),\right. \\
& \left.\left(\mathrm{V}_{3}, \mathrm{~V}_{6}\right),\left(\mathrm{V}_{4}, \mathrm{~V}_{5}\right),\left(\mathrm{V}_{4}, \mathrm{~V}_{6}\right),\left(\mathrm{V}_{5}, \mathrm{~V}_{6}\right)\right\}
\end{aligned}
$$

Edges

- Graphs may be directed or undirected.
- In directed graphs, the edge pairs are ordered.
- Edges often have some weight or cost associated with them (weighted graphs).

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
E= & \left\{\left(v_{1}, v_{3}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\right. \\
& \left.\left(v_{3}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{5}, v_{6}\right)\right\}
\end{aligned}
$$

directed and weighted graph

Paths

- Vertex w is adjacent to vertex v iff $(w, v) \in E$.
- A path is a sequence of vertices $w_{1}, w_{2}, \ldots, w_{k}$ such that $\left(w_{i}, w_{i+1}\right) \in E$.
- length of a path:
k-1 = number of edges on path
- cost of a path:

Sum of all edge costs.

Path from v_{1} to v_{6}, length 3 , cost 8
$5 \quad\left(v_{1}, v_{3}\right),\left(v_{3}, v_{5}\right),\left(v_{5}, v_{6}\right)$

Representing Graphs

- Represent graph $G=(E, V)$, option 2: Adjacency Lists
- For each vertex, keep a list of all adjacent vertices.

Representing Graphs

- Represent graph $G=(E, V)$, option 2: Adjacency Lists
- For each vertex, keep a list of all adjacent vertices.

V_{0}	$\mathrm{v}_{2}: 2$	
V_{1}	v_{0} : 1	V_{2} : 3
V_{2}	$\mathrm{v}_{3}: 3$	$\mathrm{V}_{4}: 4$
V_{3}	V_{5} :3	
V_{4}	V5:4	

Space requirement: $\Theta(|V|+|E|)$

Graph Search

Graph Search

Graph Search

Letters indicate junctions where a decision must be made.

Graph Search

Graph Search

Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- push all vertices adjacent to u to the stack.
v_{1}

Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- push all vertices adjacent to u to the stack.

Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- push all vertices adjacent to u to the stack.

Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- push all vertices adjacent to u to the stack.

Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) tou
- Graph Trave algorithms.
graph

Problem: This Graph contains cycles!

- While the stack is not empty:
- u <- stack.pop()
- push all vertices adjacent to u to the stack.

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

v_{1}
visited $\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}\right\}$

Depth First Search (DFS) with Visited Set

V_{1}
$\mathrm{~V}_{6}$
$\mathrm{~V}_{6}$
$\mathrm{~V}_{7}$
$\mathrm{~V}_{5}$
$\mathrm{~V}_{2}$

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}\right\}$

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Depth First Search (DFS) with Visited Set

V_{6}
$\mathrm{~V}_{6}$
$\mathrm{~V}_{7}$
$\mathrm{~V}_{5}$
$\mathrm{~V}_{2}$

Visited: $\left\{\mathbf{v}_{\mathbf{1}}, \mathrm{V}_{4}, \mathrm{~V}_{3}\right\}$

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{6}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{62}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \mathrm{~V}_{7}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathbf{V}_{\mathbf{6}}, \mathrm{V}_{7}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \mathrm{~V}_{5}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \mathbf{V}_{7}, \mathrm{~V}_{5}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \mathrm{~V}_{5}, \mathrm{~V}_{2}\right\}$

Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
- u <- stack.pop()
- if u is not in visited:
- add u to visited.
- push all vertices adjacent to u to the stack.

Running time: $\mathrm{O}(|\mathrm{E}|)$

Visited: $\left\{\mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \mathrm{~V}_{5}, \mathrm{~V}_{2}\right\}$

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree
V_{1}

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree

Recursive DFS (with visited marker kept on vertex objects)


```
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        dfs( w );
```

DFS Spanning Tree

DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.

DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.

DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.

DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.

$$
\begin{array}{ll}
\mathrm{V}_{1}: & \mathrm{V}_{2,} \mathrm{~V}_{4} \\
\mathrm{~V}_{2} & \mathrm{~V}_{4}, \mathrm{~V}_{5} \\
\mathrm{~V}_{3} & \mathrm{~V}_{1}, \mathrm{~V}_{6} \\
\mathrm{~V}_{4} & \mathrm{~V}_{5} \\
\mathrm{~V}_{5}: & \\
\mathrm{V}_{6} & \mathrm{~V}_{7} \\
\mathrm{~V}_{7}: & \mathrm{V}_{5}
\end{array}
$$

DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.

$$
\begin{array}{ll}
\mathrm{V}_{1}: & \mathrm{V}_{2}, \mathrm{~V}_{4} \\
\mathrm{~V}_{2}: & \mathrm{V}_{4}, \mathrm{~V}_{5} \\
\mathrm{~V}_{3} & \mathrm{~V}_{1}, \mathrm{~V}_{6} \\
\mathrm{~V}_{4} & \mathrm{~V}_{5} \\
\mathrm{~V}_{5}: & \\
\mathrm{V}_{6} & \mathrm{~V}_{7} \\
\mathrm{~V}_{7}: & \mathrm{V}_{5}
\end{array}
$$

- If stack is empty or we reach top of recursion, scan through adjacency list until we find an unseen starting node.

DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.

$$
\begin{array}{ll}
\mathrm{V}_{1}: & \mathrm{V}_{2}, \mathrm{~V}_{4} \\
\mathrm{~V}_{2}: & \mathrm{V}_{4}, \mathrm{~V}_{5} \\
\mathrm{~V}_{3}: & \mathrm{V}_{1}, \mathrm{~V}_{6} \\
\mathrm{~V}_{4}: & \mathrm{V}_{5} \\
\mathrm{~V}_{5}: & \\
\mathrm{V}_{6} & \mathrm{~V}_{7} \\
\mathrm{~V}_{7}: & \mathrm{V}_{5} \\
\hline
\end{array}
$$

Running time for complete DFS traversal: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

- If stack is empty or we reach top of recursion, scan through adjacency list until we find an unseen starting node.

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Breadth-First Search (BFS)

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u :
- if v is not in visited:
- Add v to visited.
- enqueue(v).

Running time (to traverse the entire graph): $O(|\mathrm{~V}|+|\mathrm{E}|)$

Breadth-First Search (BFS)

Running time (to traverse the entire graph): $\mathrm{O}(|\mathrm{V}|+|E|)$

Use a queue and a set visited.

- Enqueue s
- Add s to visited
- While the queue is not empty:
- $u<-$ dequeue()

BFS will traverse the entire graph even without a visited set.
DFS can get stuck in a loop.

Finding Shortest Paths

- Goal: Find the shortest path between two vertices s and t.

Finding Shortest Paths

- Goal: Find the shortest path between two vertices s and t.

length 3

Finding Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.

Finding Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.

Finding Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $v \in \mathrm{~V}$ set v . distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $v \in \mathrm{~V}$ set v . distance $=\infty$
- enqueues
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $\mathrm{v} \in \mathrm{V}$ set v . distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $\mathrm{v} \in \mathrm{V}$ set v . distance $=\infty$
- enqueues
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $v \in \mathrm{~V}$ set v . distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $v \in \mathrm{~V}$ set v . distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $v \in \mathrm{~V}$ set v . distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS

- s.distance $=0$
- for all $v \in V$ set v. distance $=\infty$
- enqueues
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.distance = u.distance + 1
- enqueue(u)

Finding Shortest Paths with BFS

- s. distance $=0$
- for all $v \in \mathrm{~V}$ set v . distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$

This is just BFS. Running time: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Finding Shortest Paths with BFS - Back pointers

Maintain pointers to the previous node on the shortest path.

Queue $\quad \mathrm{V}_{1} \mid \mathrm{V}_{6}$

- s.distance $=0$
- for all $\mathrm{v} \in \mathrm{V}$ set v .distance $=\infty$
- enqueue s
- While the queue is not empty:
- u <- dequeue()
- for each vertex v that is adjacent to u :
- if v . distance $==\infty$
- v.prev = u
- v.distance $=u$.distance + 1
- enqueue(v)

Finding Shortest Paths with BFS - Back pointers

Maintain pointers to the previous node on the shortest path.

Queue $\quad v_{6}\left|v_{2}\right| v_{4}$

- s.distance $=0$
- for all $v \in \mathrm{~V}$ set v.distance $=\infty$
- enqueue s
- While the queue is not empty:
- $u<-$ dequeue()
- for each vertex v that is adjacent to u:
- if v.distance $==\infty$
- v.prev = u
- v.distance = u.distance + 1
- enqueue(v)

Weighted Shortest Paths

- Goal: Find the shortest path between two vertices s and t .

Weighted Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- Normal BFS will find this path.

length 2 cost 11

Weighted Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- This path is shorter.

length 3 cost 8

What is the shortest path between v_{2} and v_{6} ?

Negative Weights

- We normally expect the shortest path to be simple.
- Edges with Negative Weights can lead to negative cycles.
- The concept of "shortest path" is then not clearly defined.

Dijkstra's Algorithm for Weighted Shortest Path

Dijkstra's Algorithm for Weighted Shortest Path

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.

Dijkstra's Algorithm for Weighted Shortest Path

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
- That means there might be a lower-cost path through other vertices that have not been seen yet.

Dijkstra's Algorithm for Weighted Shortest Path

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
- That means there might be a lower-cost path through other vertices that have not been seen yet.
- Keep nodes on a priority queue and always expand the vertex with the lowest cost annotation first!
- Intuitively, this means we will never overestimate the cost and miss lower-cost path.

Dijkstra's Algorithm for Weighted Shortest Path

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
- That means there might be a lower-cost path through other vertices that have not been seen yet.
- Keep nodes on a priority queue and always expand the vertex with the lowest cost annotation first! \leftarrow This is a greedy algorithm
- Intuitively, this means we will never overestimate the cost and miss lower-cost path.

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- $s . \operatorname{cost}=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v):
- if not v.visited:
- if (u.cost $+\operatorname{cost}(u, v)<v . c o s t)$
- v.cost $=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- $s . \operatorname{cost}=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not $\mathrm{v} . \mathrm{visited:}$
- if (u.cost $+\operatorname{cost}(u, v)<v . \operatorname{cost})$
- $v . \operatorname{cost}=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- s.cost $=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not $\mathrm{v} . \mathrm{visited:}$
- if (u.cost $+\operatorname{cost}(u, v)<v . \operatorname{cost})$
- $v . \operatorname{cost}=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- s.cost $=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not $\mathrm{v} . \mathrm{visited:}$
- if (u.cost $+\operatorname{cost}(u, v)<v . \operatorname{cost})$
- $v . \operatorname{cost}=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- $s . \operatorname{cost}=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not $\mathrm{v} . \mathrm{visited:}$
- if (u.cost $+\operatorname{cost}(u, v)<v . \operatorname{cost})$
- v.cost $=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- s.cost $=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (u.cost $+\operatorname{cost}(u, v)<v . c o s t)$
- v.cost $=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- s.cost $=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (u.cost $+\operatorname{cost}(u, v)<v . c o s t)$
- v.cost $=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm

Use a Priority Queue q

- for all $v \in \mathrm{~V}$
set v .cost $=\infty$, set v .visited $=$ false
- $s . \operatorname{cost}=0$, s.visited = true;
- q.insert(s)
- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v):
- if not v.visited:
- if (u.cost $+\operatorname{cost}(u, v)<v . c o s t)$
- v.cost $=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm - a subtle bug

$\mathrm{v}_{7} \cdot \operatorname{cost}+\operatorname{cost}\left(\mathrm{v}_{6}, \mathrm{~V}_{7}\right)=6$

- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (u.cost $+\operatorname{cost}(u, v)<v . \operatorname{cost})$
- $v . \operatorname{cost}=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)

Dijkstra's Algorithm - a subtle bug

$\mathrm{v}_{7} . \operatorname{cost}+\operatorname{cost}\left(\mathrm{v}_{6}, \mathrm{~V}_{7}\right)=6$

- While q is not empty:
- u <- q.deleteMin()
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (u.cost $+\operatorname{cost}(u, v)<v . \operatorname{cost})$
- $v . \operatorname{cost}=u . \cos t+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert(v)
- v_{7} is already in q, and has not been visited.
- does insert $\left(v_{7}\right)$ create a new entry in the q or update the existing one?
- if q is a heap, updating the cost will change v_{7} everywhere in the heap and might make the heap invalid.

Dijkstra’s Algorithm - Fixed

$\mathrm{V}_{7} . \operatorname{cost}+\operatorname{cost}\left(\mathrm{V}_{6}, \mathrm{~V}_{7}\right)=6$

- Keep a separate cost object in the queue that isn't updated.
- Ignore duplicate entries for vertices.

Use a Priority Queue q

- for all $v \in V$
set $v . \operatorname{cost}=\infty$, set $v . v i s i t e d=$ false
- $s . \operatorname{cost}=0$
- q.insert((0, s))
- While q is not empty:
- (costu, u) <- q. deleteMin()
- if not u.visited:
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (costu $+\operatorname{cost}(u, v)<v . c o s t)$
- $v . \operatorname{cost}=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert((v.cost, v))

Dijkstra's Running Time

- There are |E| insert and deleteMin operations.
- The maximum size of the priority queue is O(|E|). Each insert takes O(log |E|)

O(|E| $\log |E|)$

Use a Priority Queue q

- for all $v \in \mathrm{~V}$

$$
\text { set } v . c o s t=\infty \text {, set } v . v i s i t e d=\text { false }
$$

- s.cost = 0
- q.insert((0, s))
- While q is not empty:
- (costu, u) <- q.deleteMin()
- if not u.visited:
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (ucost $+\operatorname{cost}(u, v)<v . c o s t)$
- $v . \operatorname{cost}=u . \operatorname{cost}+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert((v.cost, v))

Dijkstra's Running Time

- There are |E| insert and deleteMin operations.
- The maximum size of the priority queue is O(|E|). Each insert takes $\mathrm{O}(\log |E|)$

$$
\begin{aligned}
& O(|E| \log |E|) \\
= & O(|E| \log |V|)
\end{aligned}
$$

because $|\mathrm{E}| \leq|V|^{2}$, and therefore $\log |\mathrm{E}| \leq 2 \log |\mathrm{~V}|$

Use a Priority Queue q

- for all $v \in V$
set $v . \operatorname{cost}=\infty$, set v .visited $=$ false
- $s . \operatorname{cost}=0$
- q.insert((0, s))
- While q is not empty:
- (costu, u) <- q.deleteMin()
- if not u.visited:
- u.visited = true
- for each edge (u, v) :
- if not v.visited:
- if (ucost $+\operatorname{cost}(u, v)<v . \cos t)$
- $v . \operatorname{cost}=u \cdot \cos t+\operatorname{cost}(u, v)$
- v.prev = u
- q.insert((v.cost, v))

Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.

Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.

W1007 W1004

Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.
W1007 W1004 W3134 W3203 W3137 W3157

Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.
W1007 W1004 W3134 W3203 W3137 W3157 W3261 W4111 W4701

Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.

W1007 W1004 W3134 W3203 W3137 W3157 W3261 W4111 W4701 W4115 W4156

Application: Critical Path Analysis

- An Event-Node Graph is a DAG in which
- Edges represent tasks, weight represents the time it takes to complete the task.
- Vertices represent the event of completing a set of tasks.

Application: Critical Path Analysis

- We are interested in the earliest completion time. (Earliest time we can reach the final event).
- This is equivalent to finding the longest path through the DAG (why does this not work with cycles?).

Application: Critical Path Analysis

- If an event has more than one incoming event, all tasks have to be finished before other tasks can proceed.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra’s algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path

Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra's algorithm $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.
- We now try to find the longest path.

Application: Critical Path Analysis

- For DAGs we can improve on Dijkstra's $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ bound.
- Use topological sort.

Application: Critical Path Analysis

- Basic idea: Compute the earliest completion time for each event.
- Process events in topological order.

Computing Topological Order

- Basic idea: Use BFS!
- To compute topological order, we need to find all incoming edges to a node first before visiting the node.

Computing Topological Order

- Example Application: Computing earliest completion time.
- First annotate each vertex with the number of incoming edges (the indegree).

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v1
Output:

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v2 v3
Output: v1

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v3 v4
Output: v1 v2

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v4
Output: v1 v2 v3

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v5
Output: v1 v2 v3 v4

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v6 v9
Output: v1 v2 v3 v4 v5

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v9 v7
Output: v1 v2 v3 v4 v5 v6

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v7
Output: v1 v2 v3 v4 v5 v6 v9

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v8
Output: v1 v2 v3 v4 v5 v6 v9 v7

Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue:
Output: v1 v2 v3 v4 v5 v6 v9 v7 v8

Topological Sort - Running

 Time- First annotate each vertex with its indegree.
- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

Topological Sort - Running

 Time- First annotate each vertex with its indegree.
- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0 , enqueue it.

This is just BFS. Running time: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v1
Output:

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v2 v3
Output: v1

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v3 v4
Output: v1 v2

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v4
Output: v1 v2 v3

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v5
Output: v1 v2 v3 v4

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v6 v9
Output: v1 v2 v3 v4 v5

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v9 v7
Output: v1 v2 v3 v4 v5 v6

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v7
Output: v1 v2 v3 v4 v5 v6 v9

Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. Update earliest completion time for each adjacent node.
- If the indegree of any new vertex becomes 0 , enqueue it.

Queue: v8
Output: v1 v2 v3 v4 v5 v6 v9 v7

