Data Structures in Java

10/18/2015

Daniel Bauer
Today: Graph Traversals

- Depth First Search (a generalization of pre-order traversal on trees to graphs, uses a Stack)
- Breadth First Search (uses a Queue)
- Dijkstra’s algorithm to find weighted shortest paths (uses a Priority Queue)
- Topological sort for Directed Acyclic Graphs.
 - Application: Shortest Project Completion Time.
A **Graph** is a pair of two sets $G=(V,E)$:

- **V**: the set of **vertices** (or **nodes**)
- **E**: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6 \}$$

$$E = \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_5), (v_3, v_4), (v_3, v_6), (v_4, v_5), (v_4, v_6), (v_5, v_6)\}$$
Edges

- Graphs may be **directed** or **undirected**.
 - In directed graphs, the edge pairs are ordered.

- Edges often have some weight or cost associated with them (**weighted** graphs).

\[V = \{ v_1, v_2, v_3, v_4, v_5, v_6 \} \]
\[E = \{ (v_1, v_3), (v_2, v_1), (v_2, v_3), (v_3, v_4), (v_3, v_5), (v_4, v_6), (v_5, v_6) \} \]
Paths

- Vertex \(w \) is **adjacent** to vertex \(v \) iff \((w,v) \in E\).
- A **path** is a sequence of vertices \(w_1, w_2, \ldots, w_k \) such that \((w_i, w_{i+1}) \in E\).

length of a path:
\[k - 1 = \text{number of edges on path} \]

cost of a path:
\[\text{Sum of all edge costs.} \]

Path from \(v_1 \) to \(v_6 \), length 3, cost 8:
\((v_1, v_3), (v_3, v_5), (v_5, v_6)\)
Representing Graphs

• Represent graph $G = (E, V)$, option 2: **Adjacency Lists**

• For each vertex, keep a list of all adjacent vertices.
Representing Graphs

- Represent graph $G = (E, V)$, option 2: **Adjacency Lists**
 - For each vertex, keep a list of all adjacent vertices.

Space requirement: $\Theta(|V| + |E|)$
Graph Search
Graph Search
Letters indicate junctions where a decision must be made.
Graph Search
Graph Search
Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push s to the stack.
- While the stack is not empty:
 - $u \leftarrow$ stack.pop()
 - push all vertices adjacent to u to the stack.
Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack:

- Push s to the stack.
- While the stack is not empty:
 - $u \leftarrow$ stack.pop()
 - push all vertices adjacent to u to the stack.
Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex \(s \) (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - push all vertices adjacent to \(u \) to the stack.
Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

Use a stack.

- Push s to the stack.
- While the stack is not empty:
 - $u \leftarrow$ stack.pop()
 - push all vertices adjacent to u to the stack.
Graph Search: Depth First Search (DFS)

- Goal: Systematically explore the graph, starting at vertex s (source) touching all edges.
- Graph Traversals are the core ingredient of most graph algorithms.

While the stack is not empty:
- $u \leftarrow$ stack.pop()
- push all vertices adjacent to u to the stack.

Problem: This Graph contains cycles!
Depth First Search (DFS) with Visited Set

Use a stack and a set \textit{visited}.

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - if \(u \) is not in \textit{visited}:
 - add \(u \) to \textit{visited}.
 - push all vertices adjacent to \(u \) to the stack.
Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack}.\text{pop}() \)
 - if \(u \) is not in visited:
 - add \(u \) to visited.
 - push all vertices adjacent to \(u \) to the stack.

Visited: \{v_1\}
Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack}.\text{pop}() \)
 - if \(u \) is not in visited:
 - add \(u \) to visited.
 - push all vertices adjacent to \(u \) to the stack.

Visited: \(\{v_1, v_4\} \)
Depth First Search (DFS) with \textit{Visited} Set

Use a stack and a set \textit{visited}.

- Push s to the stack.
- While the stack is not empty:
 - $u \leftarrow \text{stack.pop}()$
 - if u is not in \textit{visited}:
 - add u to \textit{visited}.
 - push all vertices adjacent to u to the stack.

Visited: \{v_1,v_4,v_3\}
Use a stack and a set \textit{visited}.

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - if \(u \) is not in \textit{visited}:
 - add \(u \) to \textit{visited}.
 - push all vertices adjacent to \(u \) to the stack.

Visited: \(\{v_1, v_4, v_3\} \)
Depth First Search (DFS) with \textit{Visited} Set

Use a stack and a set \textit{visited}.

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - if \(u \) is not in \textit{visited}:
 - add \(u \) to \textit{visited}.
 - push all vertices adjacent to \(u \) to the stack.

Visited: \{\(v_1, v_4, v_3, v_6 \)\}
Depth First Search (DFS) with Visited Set

Use a stack and a set \textit{visited}.

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \gets \text{stack.pop()} \)
 - if \(u \) is not in \textit{visited}:
 - add \(u \) to \textit{visited}.
 - push all vertices adjacent to \(u \) to the stack.

Visited: \(\{v_1, v_4, v_3, v_6\} \)
Depth First Search (DFS) with \textit{Visited} Set

Use a stack and a set \textit{visited}.

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - if \(u \) is not in \textit{visited}:
 - add \(u \) to \textit{visited}.
 - push all vertices adjacent to \(u \) to the stack.

Visited: \(\{v_1, v_4, v_3, v_6, v_7\} \)
Depth First Search (DFS) with Visited Set

Use a stack and a set `visited`.

- Push `s` to the stack.
- While the stack is not empty:
 - `u` <- stack.pop()
 - if `u` is not in `visited`:
 - add `u` to `visited`.
 - push all vertices adjacent to `u` to the stack.

Visited: `{v₁, v₄, v₃, v₆, v₇}`
Depth First Search (DFS) with Visited Set

Use a stack and a set visited.

- Push s to the stack.
- While the stack is not empty:
 - $u \leftarrow$ stack.pop()
 - if u is not in visited:
 - add u to visited.
 - push all vertices adjacent to u to the stack.

Visited: \{v_1, v_4, v_3, v_6, v_7, v_5\}
Depth First Search (DFS) with Visited Set

Use a stack and a set \(\text{visited} \).

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - if \(u \) is not in \(\text{visited} \):
 - add \(u \) to \(\text{visited} \).
 - push all vertices adjacent to \(u \) to the stack.

Visited: \(\{v_1,v_4,v_3,v_6,v_7,v_5\} \)
Depth First Search (DFS) with \textit{Visited} Set

Use a stack and a set \textit{visited}.

- Push s to the stack.
- While the stack is not empty:
 - $u \leftarrow$ stack.pop()
 - if u is not in \textit{visited}:
 - add u to \textit{visited}.
 - push all vertices adjacent to u to the stack.

\textbf{Visited:} \{v_1, v_4, v_3, v_6, v_7, v_5, v_2\}
Depth First Search (DFS) with Visited Set

Use a stack and a set \(visited \).

- Push \(s \) to the stack.
- While the stack is not empty:
 - \(u \leftarrow \text{stack.pop()} \)
 - if \(u \) is not in \(visited \):
 - add \(u \) to \(visited \).
 - push all vertices adjacent to \(u \) to the stack.

Running time: \(O(|E|) \)

Visited: \(\{v_1, v_4, v_3, v_6, v_7, v_5, v_2\} \)
Recursive DFS (with \textit{visited} marker kept on vertex objects)

\begin{algorithm}
\SetAlgoLined
void dfs(Vertex v)
\{ \\
\hspace{1em} v.visited = true; \\
\hspace{1em} for each Vertex w adjacent to v \\
\hspace{2em} if(\neg w.visited) \\
\hspace{3em} dfs(w); \\
\}
\end{algorithm}

DFS Spanning Tree \\
V_1
Recursive DFS (with \textit{visited} marker kept on vertex objects)

```c
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
            dfs( w );
}
```

DFS Spanning Tree
Recursive DFS (with \textit{visited} marker kept on vertex objects)

\begin{verbatim}
void dfs(Vertex v) {
 v.visited = true;
 for each Vertex w adjacent to v
 if(!w.visited)
 dfs(w);
}
\end{verbatim}

DFS Spanning Tree
Recursive DFS (with *visited* marker kept on vertex objects)

```java
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
            dfs( w );
}
```

DFS Spanning Tree

```
 DFS Spanning Tree
```

```
 void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
            dfs( w );
}
```
Recursive DFS (with \textit{visited} marker kept on vertex objects)

\begin{verbatim}
void dfs(Vertex v) {
 v.visited = true;
 for each Vertex w adjacent to v
 if(!w.visited)
 dfs(w);
}
\end{verbatim}

DFS Spanning Tree
Recursive DFS (with visited marker kept on vertex objects)

```java
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
            dfs( w );
}
```

DFS Spanning Tree
Recursive DFS (with \textit{visited} marker kept on vertex objects)

```java
void dfs( Vertex v ) {
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
            dfs( w );
}
```

DFS Spanning Tree
DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.
DFS on the Entire Graph

• It is possible that not all vertices are reachable from a designated start vertex.
DFS on the Entire Graph

- It is possible that not all vertices are reachable from a designated start vertex.
DFS on the Entire Graph

• It is possible that not all vertices are reachable from a designated start vertex.

V1: V2, V4
V2: V4, V5
V3: V1, V6
V4: V5
V5: V6: V7
V7: V5
DFS on the Entire Graph

• It is possible that not all vertices are reachable from a designated start vertex.

V1: V2, V4
V2: V4, V5
V3: V1, V6
V4: V5
V5:
V6: V7
V7: V5

• If stack is empty or we reach top of recursion, scan through adjacency list until we find an unseen starting node.
DFS on the Entire Graph

• It is possible that not all vertices are reachable from a designated start vertex.

Running time for complete DFS traversal: $O(|V| + |E|)$

• If stack is empty or we reach top of recursion, scan through adjacency list until we find an unseen starting node.
Breadth-First Search (BFS)

Use a **queue** and a set **visited**.
- Enqueue s
- Add s to **visited**
- While the queue is not empty:
 - $u \leftarrow$ dequeue()
 - for each vertex v that is adjacent to u:
 - if v is not in **visited**:
 - Add v to visited.
 - enqueue(v).

Queue V_1

Visited: $\{V_1\}$
Breadth-First Search (BFS)

Use a queue and a set visited.
- Enqueue s
- Add s to visited
- While the queue is not empty:
 - u <- dequeue()
 - for each vertex v that is adjacent to u:
 - if v is not in visited:
 - Add v to visited.
 - enqueue(v).

Queue \[V_2 \ V_4 \]

Visited: \(\{ v_1, v_2, v_4 \} \)
Breadth-First Search (BFS)

Use a queue and a set visited.
- Enqueue s
- Add s to visited
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \) is not in visited:
 - Add \(v \) to visited.
 - enqueue(\(v \)).

Queue \(\{V_4, V_5\} \)

Visited: \(\{V_1, V_2, V_4, V_5\} \)
Breadth-First Search (BFS)

Use a queue and a set \(\text{visited} \).
- Enqueue \(s \)
- Add \(s \) to \(\text{visited} \)
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \) is not in \(\text{visited} \):
 - Add \(v \) to \(\text{visited} \).
 - enqueue(\(v \)).
Breadth-First Search (BFS)

Use a queue and a set visited.
- Enqueue s
- Add s to visited
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \) is not in visited:
 - Add \(v \) to visited.
 - enqueue(\(v \)).
Breadth-First Search (BFS)

Use a queue and a set \textit{visited}.
- Enqueue \(s \)
- Add \(s \) to \textit{visited}
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \) is not in \textit{visited}:
 - Add \(v \) to \textit{visited}.
 - enqueue(v).
Breadth-First Search (BFS)

Use a queue and a set \(\text{visited} \).
- Enqueue \(s \)
- Add \(s \) to \(\text{visited} \)
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \) is not in \(\text{visited} \):
 - Add \(v \) to \(\text{visited} \).
 - enqueue(\(v \)).

Queue

\[\text{Queue: } \{ V_3 \} \]

Visited: \(\{ V_1, V_2, V_4, V_5, V_7, V_6, V_3 \} \)
Breadth-First Search (BFS)

Use a queue and a set \textit{visited}.
- Enqueue \(s \)
- Add \(s \) to \textit{visited}
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \) is not in \textit{visited}:
 - Add \(v \) to \textit{visited}.
 - enqueue(\(v \)).

Queue

Visited:\{\(v_1, v_2, v_4, v_5, v_7, v_6, v_3 \}\}
Breadth-First Search (BFS)

Use a queue and a set visited.
- Enqueue s
- Add s to visited
- While the queue is not empty:
 - $u \leftarrow$ dequeue()
 - for each vertex v that is adjacent to u:
 - if v is not in visited:
 - Add v to visited.
 - enqueue(v).

Running time (to traverse the entire graph): $O(|V|+|E|)$

Queue

Visited: \{v_1, v_2, v_4, v_5, v_7, v_6, v_3\}
Breadth-First Search (BFS)

Use a queue and a set \textit{visited}.
- Enqueue \(s \)
- Add \(s \) to \textit{visited}
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)

BFS will traverse the entire graph even without a visited set.
DFS can get stuck in a loop.

Visited: \(\{v_1, v_2, v_4, v_5, v_7, v_6, v_3\} \)

Queue

Running time (to traverse the entire graph): \(O(|V|+|E|) \)
Finding Shortest Paths

• Goal: Find the shortest path between two vertices s and t.

What is the shortest path between \(v_3\) and \(v_7\)?
Finding Shortest Paths

- Goal: Find the shortest path between two vertices s and t.

What is the shortest path between \(v_3 \) and \(v_7 \)?
Finding Shortest Paths

• Goal: Find the shortest path between two vertices s and t.

• It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called **single-source shortest paths**.
Finding Shortest Paths

• Goal: Find the shortest path between two vertices s and t.

• It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.
Finding Shortest Paths

- Goal: Find the shortest path between two vertices \(s \) and \(t \).
- It turns out that finding the shortest path between \(s \) and \(\text{ALL} \) other vertices is just as easy. This problem is called **single-source shortest paths**.
Finding Shortest Paths with BFS

- s.distance = 0
- for all v ∈ V set v.distance = ∞
- enqueue s
- While the queue is not empty:
 - u <- dequeue()
 - for each vertex v that is adjacent to u:
 - if v.distance == ∞
 - v.distance = u.distance + 1
 - enqueue(v)
Finding Shortest Paths with BFS

- \(s.\text{distance} = 0 \)
- For all \(v \in V \) set \(v.\text{distance} = \infty \)
- Enqueue \(s \)
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue}() \)
 - For each vertex \(v \) that is adjacent to \(u \):
 - If \(v.\text{distance} == \infty \)
 - \(v.\text{distance} = u.\text{distance} + 1 \)
 - Enqueue \(v \)
Finding Shortest Paths with BFS

- s.distance = 0
- for all $v \in V$ set v.distance = ∞
- enqueue s
- While the queue is not empty:
 - $u \leftarrow$ dequeue()
 - for each vertex v that is adjacent to u:
 - if v.distance == ∞
 - v.distance = u.distance + 1
 - enqueue(v)
Finding Shortest Paths with BFS

- s.distance = 0
- for all $v \in V$ set v.distance = ∞
- enqueue s
- While the queue is not empty:
 - u <- dequeue()
 - for each vertex v that is adjacent to u:
 - if v.distance == ∞
 - v.distance = u.distance + 1
 - enqueue(v)
Finding Shortest Paths with BFS

- s.distance = 0
- for all \(v \in V \) set \(v.d\text{istance} = \infty \)
- enqueue s
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v.d\text{istance} == \infty \)
 - \(v.d\text{istance} = u.d\text{istance} + 1 \)
 - enqueue(\(v \))

Queue: \[V_4, V_5 \]
Finding Shortest Paths with BFS

- \(s \text{.distance} = 0 \)
- for all \(v \in V \) set \(v \text{.distance} = \infty \)
- enqueue \(s \)
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v \text{.distance} == \infty \)
 - \(v \text{.distance} = u \text{.distance} + 1 \)
 - enqueue\((v) \)
Finding Shortest Paths with BFS

- s.distance = 0
- for all v ∈ V set v.distance = ∞
- enqueue s
- While the queue is not empty:
 - u ← dequeue()
 - for each vertex v that is adjacent to u:
 - if v.distance == ∞
 - v.distance = u.distance + 1
 - enqueue(v)
Finding Shortest Paths with BFS

- \(s\.distance = 0 \)
- for all \(v \in V \) set \(v\.distance = \infty \)
- enqueue \(s \)
- While the queue is not empty:
 - \(u \leftarrow \text{dequeue()} \)
 - for each vertex \(v \) that is adjacent to \(u \):
 - if \(v\.distance == \infty \)
 - \(v\.distance = u\.distance + 1 \)
 - enqueue(u)
Finding Shortest Paths with BFS

- s.distance = 0
- for all $v \in V$ set v.distance = ∞
- enqueue s
- While the queue is not empty:
 - $u \leftarrow$ dequeue()
 - for each vertex v that is adjacent to u:
 - if v.distance == ∞
 - v.distance = u.distance + 1

This is just BFS. Running time: $O(|V|+|E|)$
Finding Shortest Paths with BFS - Back pointers

Maintain pointers to the previous node on the shortest path.

- s.distance = 0
- for all $v \in V$ set $v.$distance = ∞
- enqueue s
- While the queue is not empty:
 - $u \leftarrow$ dequeue()
 - for each vertex v that is adjacent to u:
 - if $v.$distance == ∞
 - $v.$prev = u
 - $v.$distance = $u.$distance + 1
 - enqueue(v)
Finding Shortest Paths with BFS - Back pointers

Maintain pointers to the previous node on the shortest path.

- $s.distance = 0$
- for all $v \in V$ set $v.distance = \infty$
- enqueue s
- While the queue is not empty:
 - $u \gets$ dequeue()
 - for each vertex v that is adjacent to u:
 - if $v.distance == \infty$
 - $v.prev = u$
 - $v.distance = u.distance + 1$
 - enqueue(v)

Queue: $V_6 \ V_2 \ V_4$
Weighted Shortest Paths

- Goal: Find the shortest path between two vertices s and t.

What is the shortest path between v_2 and v_6?
Weighted Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- Normal BFS will find this path.

What is the shortest path between v_2 and v_6?
Weighted Shortest Paths

- Goal: Find the shortest path between two vertices s and t.
- This path is shorter.

What is the shortest path between v_2 and v_6?

What is the shortest path between v_2 and v_6?
Negative Weights

• We normally expect the shortest path to be simple.
• Edges with Negative Weights can lead to negative cycles.
• The concept of “shortest path” is then not clearly defined.

What is the shortest path between v_2 and v_6?
Dijkstra’s Algorithm for Weighted Shortest Path
Dijkstra’s Algorithm for Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
Dijkstra’s Algorithm for Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest cost *using only vertices visited so far.*

• That means there might be a lower-cost path through other vertices that have not been seen yet.
Dijkstra’s Algorithm for Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.

• That means there might be a lower-cost path through other vertices that have not been seen yet.

• Keep nodes on a priority queue and always expand the vertex with the lowest cost annotation first!

• Intuitively, this means we will never overestimate the cost and miss lower-cost path.
Dijkstra’s Algorithm for Weighted Shortest Path

• Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.

• That means there might be a lower-cost path through other vertices that have not been seen yet.

• Keep nodes on a priority queue and always expand the vertex with the lowest cost annotation first! ← This is a greedy algorithm

• Intuitively, this means we will never overestimate the cost and miss lower-cost path.
Dijkstra’s Algorithm

Use a **Priority Queue** q
- for all $v \in V$
 - set $v.\text{cost} = \infty$, set $v.\text{visited} = \text{false}$
- $s.\text{cost} = 0$, $s.\text{visited} = \text{true}$;
- $q.\text{insert}(s)$
- While q is not empty:
 - $u \leftarrow q.\text{deleteMin}()$
 - $u.\text{visited} = \text{true}$
 - for each edge (u, v):
 - if not $v.\text{visited}$:
 - if $(u.\text{cost} + \text{cost}(u,v) < v.\text{cost})$
 - $v.\text{cost} = u.\text{cost} + \text{cost}(u,v)$
 - $v.\text{prev} = u$
 - $q.\text{insert}(v)$
Dijkstra’s Algorithm

Use a **Priority Queue** q

- for all $v \in V$
 - set $v\text{.cost} = \infty$, set $v\text{.visited} = \text{false}$
- $s\text{.cost} = 0$, $s\text{.visited} = \text{true}$;
- $q\text{.insert}(s)$

- While q is not empty:
 - $u \leftarrow q\text{.deleteMin}()$
 - $u\text{.visited} = \text{true}$
 - for each edge (u,v):
 - if not $v\text{.visited}$:
 - if $(u\text{.cost} + \text{cost}(u,v) < v\text{.cost})$
 - $v\text{.cost} = u\text{.cost} + \text{cost}(u,v)$
 - $v\text{.prev} = u$
 - $q\text{.insert}(v)$
Dijkstra’s Algorithm

Use a **Priority Queue** q
- for all $v \in V$
 - set $v.\text{cost} = \infty$, set $v.\text{visited} = \text{false}$
- $s.\text{cost} = 0$, $s.\text{visited} = \text{true}$;
- $q.\text{insert}(s)$

- While q is not empty:
 - $u \leftarrow q.\text{deleteMin}()$
 - $u.\text{visited} = \text{true}$
 - for each edge (u,v):
 - if not $v.\text{visited}$:
 - if $(u.\text{cost} + \text{cost}(u,v) < v.\text{cost})$
 - $v.\text{cost} = u.\text{cost} + \text{cost}(u,v)$
 - $v.\text{prev} = u$
 - $q.\text{insert}(v)$
Dijkstra’s Algorithm

Use a Priority Queue q

- for all $v \in V$ set $v.cost = \infty$, set $v.visited = false$
- $s.cost = 0$, $s.visited = true$
- $q.insert(s)$

- While q is not empty:
 - $u <- q.deleteMin()$
 - $u.visited = true$
 - for each edge (u,v):
 - if not $v.visited$:
 - if $(u.cost + cost(u,v) < v.cost)$
 - $v.cost = u.cost + cost(u,v)$
 - $v.prev = u$
 - $q.insert(v)$
Dijkstra’s Algorithm

Use a **Priority Queue** q

- for all $v \in V$

 set $v.cost = \infty$, set $v.visited = false$

- $s.cost = 0$, $s.visited = true$

- $q.insert(s)$

- **While** q is not empty:

 - $u <- q.deleteMin()$

 - $u.visited = true$

 - for each edge (u, v):

 - if not $v.visited$:

 - if $(u.cost + \text{cost}(u,v) < v.cost)$

 - $v.cost = u.cost + \text{cost}(u,v)$

 - $v.prev = u$

 - $q.insert(v)$
Dijkstra’s Algorithm

Use a **Priority Queue** \(q \)

- for all \(v \in V \)
 - set \(v.cost = \infty \), set \(v.visited = \text{false} \)
- \(s.cost = 0 \), \(s.visited = \text{true} \);
- \(q.insert(s) \)

- While \(q \) is not empty:
 - \(u \leftarrow q.deleteMin() \)
 - \(u.visited = \text{true} \)
 - for each edge \((u,v)\):
 - if not \(v.visited \):
 - if \((u.cost + \text{cost}(u,v) < v.cost)\)
 - \(v.cost = u.cost + \text{cost}(u,v) \)
 - \(v.prev = u \)
 - \(q.insert(v) \)
Dijkstra’s Algorithm

Use a **Priority Queue** q

- for all $v \in V$
 - set $v\.cost = \infty$, set $v\.visited = false$
- $s\.cost = 0$, $s\.visited = true$
- $q\.insert(s)$

- While q is not empty:
 - $u <- q\.deleteMin()$
 - $u\.visited = true$
 - for each edge (u, v):
 - if not $v\.visited$:
 - if $(u\.cost + cost(u, v) < v\.cost)$
 - $v\.cost = u\.cost + cost(u, v)$
 - $v.prev = u$
 - $q\.insert(v)$
Dijkstra’s Algorithm

Use a **Priority Queue** q

- for all $v \in V$
 - set $v\.cost = \infty$, set $v\.visited = \text{false}$
- $s\.cost = 0$, $s\.visited = \text{true}$;
- $q\.insert(s)$

- While q is not empty:
 - $u <- q\.deleteMin()$
 - $u\.visited = \text{true}$
 - for each edge (u, v):
 - if not $v\.visited$:
 - if $(u\.cost + \text{cost}(u, v) < v\.cost)$
 - $v\.cost = u\.cost + \text{cost}(u, v)$
 - $v\.prev = u$
 - $q\.insert(v)$
• While q is not empty:
 • $u \leftarrow q$.deleteMin()
 • u.visited = true
 • for each edge (u, v):
 • if not v.visited:
 • if $(u$.cost $+ \text{cost}(u, v) < v$.cost)
 • v.cost = u.cost $+ \text{cost}(u, v)$
 • v.prev = u
 • q.insert(v)

Dijkstra’s Algorithm - a subtle bug

v_7.cost $+ \text{cost}(v_6, v_7) = 6$
• While q is not empty:
 • $u \leftarrow q$.deleteMin()
 • u.visited = true
 • for each edge (u,v):
 • if not v.visited:
 • if (u.cost + cost(u,v) < v.cost)
 • v.cost = u.cost + cost(u,v)
 • v.prev = u
 • q.insert(v)

v_7.cost + cost(v_6,v_7) = 6

• v_7 is already in q, and has not been visited.
• does insert(v_7) create a new entry in the q or update the existing one?
• if q is a heap, updating the cost will change v_7 everywhere in the heap and might make the heap invalid.
Dijkstra’s Algorithm - Fixed

Use a **Priority Queue** \(q \):
- for all \(v \in V \)
 - set \(v.\text{cost} = \infty \), set \(v.\text{visited} = \text{false} \)
- \(s.\text{cost} = 0 \)
- \(q.\text{insert}((0, s)) \)

While \(q \) is not empty:
- \((\text{cost}_u, u) <- q.\text{deleteMin}()\)
 - **if not** \(u.\text{visited} \):
 - \(u.\text{visited} = \text{true} \)
 - for each edge \((u, v)\):
 - **if not** \(v.\text{visited} \):
 - **if** \((\text{cost}_u + \text{cost}(u, v) < v.\text{cost})\)
 - \(v.\text{cost} = u.\text{cost} + \text{cost}(u, v) \)
 - \(v.\text{prev} = u \)
 - \(q.\text{insert}((v.\text{cost}, v)) \)

- Keep a separate cost object in the queue that isn’t updated.
- Ignore duplicate entries for vertices.

\[v_7.\text{cost} + \text{cost}(v_6, v_7) = 6 \]
Dijkstra’s Running Time

• There are $|E|$ insert and deleteMin operations.

• The maximum size of the priority queue is $O(|E|)$. Each insert takes $O(\log |E|)$

$O(|E| \log |E|)$

Use a Priority Queue q

• for all $v \in V$
 - set $v.cost = \infty$, set $v.visited = false$
• $s.cost = 0$
• $q.insert((0, s))$

• While q is not empty:
 • $(costu, u) \leftarrow q.deleteMin()$
 • if not $u.visited$:
 • $u.visited = true$
 • for each edge (u,v):
 • if not $v.visited$:
 • if $(ucost + cost(u,v) < v.cost)$
 • $v.cost = u.cost + cost(u,v)$
 • $v.prev = u$
 • $q.insert((v.cost, v))$
Dijkstra’s Running Time

- There are $|E|$ insert and deleteMin operations.
- The maximum size of the priority queue is $O(|E|)$. Each insert takes $O(\log |E|)$

Use a Priority Queue q

- for all $v \in V$
 set v.cost = ∞, set v.visited = false
- s.cost = 0
- q.insert((0, s))

- While q is not empty:
 - $(\text{cost}_u, u) \leftarrow q$.deleteMin()
 - if not u.visited:
 - u.visited = true
 - for each edge (u, v):
 - if not v.visited:
 - if $(\text{ucost} + \text{cost}(u, v) < v$.cost)
 - v.cost = u.cost + $\text{cost}(u, v)$
 - v.prev = u
 - q.insert((v.cost, v))

because $|E| \leq |V|^2$, and therefore $\log |E| \leq 2 \log |V|$
A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.

Topological Sort in DAGs
Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.
Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.

W1007 W1004 W3134 W3203 W3137 W3157
Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from u to w, u appears before w in the ordering.
Topological Sort in DAGs

A topological sort of a DAG is an ordering of its vertices such that if there is a path from \(u \) to \(w \), \(u \) appears before \(w \) in the ordering.

W1007 W1004 W3134 W3203 W3137 W3157 W3261 W4111 W4701 W4115 W4156
Application: Critical Path Analysis

• An **Event-Node Graph** is a DAG in which
• Edges represent tasks, weight represents the time it takes to complete the task.
• Vertices represent the event of completing a set of tasks.
Application: Critical Path Analysis

- We are interested in the earliest completion time. (Earliest time we can reach the final event).
- This is equivalent to finding the *longest* path through the DAG (why does this not work with cycles?).
Application: Critical Path Analysis

- If an event has more than one incoming event, all tasks have to be finished before other tasks can proceed.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra’s algorithm $O(|E| \log |V|)$.
- We now try to find the longest path.
Application: Critical Path Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra’s algorithm $O(|E| \log |V|)$.
- We now try to find the longest path.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

- Basic idea: Compute the earliest completion time for each event.
- Can use Dijkstra’s algorithm $O(|E| \log |V|)$.
- We now try to find the longest path.
Application: Critical Path Analysis

• Basic idea: Compute the earliest completion time for each event.

• Can use Dijkstra’s algorithm $O(|E| \log |V|)$.

• We now try to find the longest path.
Application: Critical Path Analysis

- For DAGs we can improve on Dijkstra’s $O(|E| \log |V|)$ bound.
- Use topological sort.
Application: Critical Path Analysis

- Basic idea: Compute the earliest completion time for each event.

- Process events in topological order.

Need at least 5 time steps to get here
Computing Topological Order

- Basic idea: Use BFS!
- To compute topological order, we need to find all incoming edges to a node first before visiting the node.
Computing Topological Order

- Example Application: Computing earliest completion time.

- First annotate each vertex with the number of incoming edges (the **indegree**).
Computing Topological Order

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v1

Output:
Computing Topological Order

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v2 v3
Output: v1
Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v3 v4

Output: v1 v2
Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v4
Output: v1 v2 v3
Computing Topological Order

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v5
Output: v1 v2 v3 v4
Computing Topological Order

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v6 v9
Output: v1 v2 v3 v4 v5
Computing Topological Order

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v9 v7

Output: v1 v2 v3 v4 v5 v6
While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.

If the indegree of any new vertex becomes 0, enqueue it.

Queue: v7

Output: v1 v2 v3 v4 v5 v6 v9
Computing Topological Order

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v8

Output: v1 v2 v3 v4 v5 v6 v9 v7
While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.

If the indegree of any new vertex becomes 0, enqueue it.

Queue:

Output: v1, v2, v3, v4, v5, v6, v9, v7, v8
Topological Sort - Running Time

- First annotate each vertex with its **indegree**.
- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0, enqueue it.
Topological Sort - Running Time

- First annotate each vertex with its **indegree**.
- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes.
- If the indegree of any new vertex becomes 0, enqueue it.

This is just BFS. Running time: $O(|V|+|E|)$
Earliest Completion Time

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**

• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v1

Output:
Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v2 v3

Output: v1
While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**

If the indegree of any new vertex becomes 0, enqueue it.

Queue: v3 v4

Output: v1 v2
Early Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v4

Output: v1 v2 v3
Earliest Completion Time

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**

• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v5

Output: v1 v2 v3 v4
Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**

- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v6 v9

Output: v1 v2 v3 v4 v5
Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v9 v7

Output: v1 v2 v3 v4 v5 v6
Earliest Completion Time

• While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**

• If the indegree of any new vertex becomes 0, enqueue it.

Queue: v7

Output: v1 v2 v3 v4 v5 v6 v9
Earliest Completion Time

- While the queue is not empty, dequeue a vertex, print it and decrement the indegree of its adjacent nodes. **Update earliest completion time for each adjacent node.**
- If the indegree of any new vertex becomes 0, enqueue it.

Queue: v8

Output: v1 v2 v3 v4 v5 v6 v9 v7